Imaging 26S proteasome activity and inhibition in living mice

The ubiquitin-proteasome pathway is the central mediator of regulated proteolysis in cells, and defects in this pathway are associated with cancer and neurodegenerative diseases. To assess 26S proteasome function in living animals, we developed a ubiquitin-luciferase reporter for bioluminescence ima...

Full description

Saved in:
Bibliographic Details
Published in:Nature medicine Vol. 9; no. 7; pp. 969 - 973
Main Authors: Piwnica-Worms, David, Luker, Gary D, Pica, Christina M, Song, Jiling, Luker, Kathryn E
Format: Journal Article
Language:English
Published: United States Nature Publishing Group 01-07-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ubiquitin-proteasome pathway is the central mediator of regulated proteolysis in cells, and defects in this pathway are associated with cancer and neurodegenerative diseases. To assess 26S proteasome function in living animals, we developed a ubiquitin-luciferase reporter for bioluminescence imaging. The reporter was degraded rapidly under steady-state conditions and stabilized in a dose- and time-dependent manner in response to proteasome inhibitors. Using bioluminescence imaging after one dose of the chemo-therapeutic proteasome inhibitor bortezomib (PS-341), proteasome function in tumor xenografts was blocked within 30 min and returned to nearly baseline by 46 h. After a 2-week regimen of bortezomib, however, imaging of target tumors showed significantly enhanced proteasome inhibition that no longer returned to baseline. The ubiquitin-luciferase reporter enables repetitive tissue-specific analysis of 26S proteasome activity in vivo and should facilitate development and validation of proteasome inhibitors in mouse models, as well as investigations of the ubiquitin-proteasome pathway in disease pathogenesis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1078-8956
1546-170X
DOI:10.1038/nm894