Influence of light availability and soil productivity on insect herbivory on bilberry (Vaccinium myrtillus L.) leaves following mammalian herbivory
Vegetative parts of bilberry (Vaccinium myrtillus) are important forage for many boreal forest mammal, bird and insect species. Plant palatability to insects is affected by concentration of nutrients and defense compounds in plants. We expected that palatability of bilberry leaves to insect herbivor...
Saved in:
Published in: | PloS one Vol. 15; no. 3; p. e0230509 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
27-03-2020
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vegetative parts of bilberry (Vaccinium myrtillus) are important forage for many boreal forest mammal, bird and insect species. Plant palatability to insects is affected by concentration of nutrients and defense compounds in plants. We expected that palatability of bilberry leaves to insect herbivores is influenced by light availability and soil productivity (both affecting nitrogen concentration and constitutive carbon-based defense compound concentration) and herbivory by mammals (affecting nitrogen concentration and induced carbon-based defense compound concentration). We studied bilberry leaf herbivory under different light availability, soil productivity and mammalian herbivory pressure in small sampling units (1m x 1m) in boreal forest in Norway. We used generalized linear mixed models and generalized additive mixed models to model insect herbivory on bilberry leaves as a function of shade, soil productivity and mammalian herbivory. Observed insect herbivory on bilberry leaves increased with increasing shade levels. Predicted insect herbivory increased with increasing previous mammalian herbivory at high shade levels and this response was magnified at higher soil productivity levels. At low to intermediate shade levels, this response was only present under high soil productivity levels. Our results indicate that light availability is more important for variation in bilberry leaf palatability than soil nutrient conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0230509 |