Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologie...
Saved in:
Published in: | PLoS pathogens Vol. 17; no. 9; p. e1009539 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-09-2021
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission. |
---|---|
Bibliography: | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Moffit Cancer Center, Tampa, Florida, United States of America Current address: Wadsworth Centre, New York State Department of Health, Slingerlands, New York, United States of America Current address: Department of Biology, Utah State University, Logan, Utah, United States of America The authors have declared that no competing interests exist. Current address: Department of Entomology and Nematology, University of California, Davis, United States of America |
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1009539 |