Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26
Aims: To isolate an antagonist for use in the biological control of phytopathogenic fungi including Colletotrichum gloeosporioides, then to purify and characterize the biocontrol agent produced by the antagonist. Methods and Results: Bacteria that exhibited antifungal activity against the causative...
Saved in:
Published in: | Journal of applied microbiology Vol. 97; no. 5; pp. 942 - 949 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Science Ltd
01-01-2004
Blackwell Science Oxford University Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims: To isolate an antagonist for use in the biological control of phytopathogenic fungi including Colletotrichum gloeosporioides, then to purify and characterize the biocontrol agent produced by the antagonist. Methods and Results: Bacteria that exhibited antifungal activity against the causative agent pepper anthracnose were isolated from soil, with Bacillus thuringiensis CMB26 showing the strongest activity. A lipopeptide produced by B. thuringiensis CMB26 was precipitated by adjusting the pH 2 with 3 n HCl and extracted using chloroform/methanol (2:1, v/v) and reversed-phase HPLC. The molecular weight was estimated as 1447 Da by MALDI-TOF mass spectrometry. Scanning electron and optical microscopies showed that the lipopeptide has activity against Escherichia coli O157:ac88, larvae of the cabbage white butterfly (Pieris rapae crucivora) and phytopathogenic fungi. The lipopeptide had cyclic structure and the amino acid composition was L-Glu, D-Orn, L-Tyr, D-allo-Thr, D-Ala, D-Val, L-Pro, and L-Ile in a molar ratio of 3:1: 2:1:1: 2:1:1. The purified lipopeptide showed the same amino acid composition as fengycin, but differed slightly in fatty acid composition, in which the double bond was at carbons 13-14 (m/z 303, 316) and there was no methyl group. Conclusion: A lipopeptide was purified and characterized from B. thuringiensis CMB26 and found to be similar to the lipopeptide fengycin. This lipopeptide can function as a biocontrol agent, and exhibits fungicidal, bactericidal, and insecticidal activity. Significance and Impact of the Study: Compared with surfactin and iturin, the lipopeptide from B. thuringiensis CMB26 showed stronger antifungal activity against phytopathogenic fungi. This lipopeptide is a candidate for the biocontrol of pathogens in agriculture. |
---|---|
Bibliography: | The first two authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1111/j.1365-2672.2004.02356.x |