Translocation of the Glucose Transporter GLUT4 in Cardiac Myocytes of the Rat

The insulin-regulated glucose transporter GLUT4 was immunolocalized in rat cardiac muscle under conditions of basal and stimulated glucose uptake, achieved by fasting and a combined exercise/insulin stimulus, respectively. In basal myocytes there was very little (<1%) GLUT4 in the different domai...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 88; no. 17; pp. 7815 - 7819
Main Authors: SLOT, J. W, GEUZE, H. J, GIGENGACK, S, JAMES, D. E, LIENHARD, G. E
Format: Journal Article
Language:English
Published: Washington, DC National Academy of Sciences of the United States of America 01-09-1991
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The insulin-regulated glucose transporter GLUT4 was immunolocalized in rat cardiac muscle under conditions of basal and stimulated glucose uptake, achieved by fasting and a combined exercise/insulin stimulus, respectively. In basal myocytes there was very little (<1%) GLUT4 in the different domains of the plasma membrane (sarcolemma, intercalated disk, and transverse tubular system). GLUT4 was localized in small tubulo-vesicular elements that occur predominantly near the sarcolemma and the transverse tubular system and in the trans-Golgi region. Upon stimulation ≈42% of GLUT4 was found in the plasma membrane. Each domain of the plasma membrane contributed equally to this effect. GLUT4-positive, clathrin-coated pits were also present at each cell surface domain. The remainder of the labeling was in tubulo-vesicular elements at the same sites as in basal cells and in the intercalated disk areas. The localization of GLUT4 in cardiac myocytes is essentially the same as in brown adipocytes, skeletal muscle, and white adipocytes. We conclude that increased glucose transport in muscle and fat is accounted for by translocation of GLUT4 from the intracellular tubulo-vesicular elements to the plasma membrane. The labeling of coated pits indicates that in stimulated myocytes, as in adipocytes, GLUT4 recycles constantly between the endosomal compartment and the plasma membrane and that stimulation of the exocytotic rate constant is likely the major mechanism for GLUT4 translocation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.17.7815