Mxi1 and Mxi1-0 Antagonize N-Myc Function and Independently Mediate Apoptosis in Neuroblastoma

Abstract Neuroblastoma (NB) is the third most common malignancy of childhood, and outcomes for children with advanced disease remain poor; amplification of the MYCN gene portends a particularly poor prognosis. Mxi1 antagonizes N-Myc by competing for binding to Max and E-boxes. Unlike N-Myc, Mxi1 med...

Full description

Saved in:
Bibliographic Details
Published in:Translational oncology Vol. 8; no. 1; pp. 65 - 74
Main Authors: Erichsen, David A, Armstrong, Michael B, Wechsler, Daniel S
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-02-2015
Neoplasia Press
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Neuroblastoma (NB) is the third most common malignancy of childhood, and outcomes for children with advanced disease remain poor; amplification of the MYCN gene portends a particularly poor prognosis. Mxi1 antagonizes N-Myc by competing for binding to Max and E-boxes. Unlike N-Myc, Mxi1 mediates transcriptional repression and suppresses cell proliferation. Mxi1 and Mxi1-0 (an alternatively transcribed Mxi1 isoform) share identical Max and DNA binding domains but differ in amino-terminal sequences. Because of the conservation of these critical binding domains, we hypothesized that Mxi1-0 antagonizes N-Myc activity similar to Mxi1. SHEP NB cells and SHEP cells stably transfected with MYCN (SHEP/MYCN) were transiently transfected with vectors containing full-length Mxi1, full-length Mxi1-0, or the common Mxi domain encoded by exons 2 to 6 (ex2-6). After incubation in low serum, parental SHEP/MYCN cell numbers were reduced compared with SHEP cells. Activated caspase-3 staining and DNA fragmentation ELISA confirmed that SHEP/MYCN cells undergo apoptosis in low serum, while SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 do not. However, SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 and grown in normal serum showed proliferation rates similar to SHEP cells. Mxi ex2-6 did not affect cell number in low or normal serum, suggesting that amino terminal domains of Mxi1 and Mxi1-0 are critical for antagonism. In the absence of N-Myc, Mxi1 and Mxi1-0 induce apoptosis independently through the caspase-8–dependent extrinsic pathway, while N-Myc activates the caspase-9–dependent intrinsic pathway. Together, these data indicate that Mxi1 and Mxi1-0 antagonize N-Myc but also independently impact NB cell survival.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-5233
1936-5233
1944-7124
DOI:10.1016/j.tranon.2015.01.002