Connectivity differences between consciousness and unconsciousness in non-rapid eye movement sleep: a TMS–EEG study
The neuronal connectivity patterns that differentiate consciousness from unconsciousness remain unclear. Previous studies have demonstrated that effective connectivity, as assessed by transcranial magnetic stimulation combined with electroencephalography (TMS–EEG), breaks down during the loss of con...
Saved in:
Published in: | Scientific reports Vol. 9; no. 1; p. 5175 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article Web Resource |
Language: | English |
Published: |
London
Nature Publishing Group UK
26-03-2019
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The neuronal connectivity patterns that differentiate consciousness from unconsciousness remain unclear. Previous studies have demonstrated that effective connectivity, as assessed by transcranial magnetic stimulation combined with electroencephalography (TMS–EEG), breaks down during the loss of consciousness. This study investigated changes in EEG connectivity associated with consciousness during non-rapid eye movement (NREM) sleep following parietal TMS. Compared with unconsciousness, conscious experiences during NREM sleep were associated with reduced phase-locking at low frequencies (<4 Hz). Transitivity and clustering coefficient in the delta and theta bands were also significantly lower during consciousness compared to unconsciousness, with differences in the clustering coefficient observed in scalp electrodes over parietal–occipital regions. There were no significant differences in Granger-causality patterns in frontal-to-parietal or parietal-to-frontal connectivity between reported unconsciousness and reported consciousness. Together these results suggest that alterations in spectral and spatial characteristics of network properties in posterior brain areas, in particular decreased local (segregated) connectivity at low frequencies, is a potential indicator of consciousness during sleep. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-85063487949 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-41274-2 |