Prognostic evaluation of the microvascular network in myelodysplastic syndromes
Considering the recently stated suggestion of neovascularization being implicated in myelodysplastic syndromes (MDS) pathogenesis, we evaluated multiple morphometric microvascular characteristics in MDS, in relation to clinicopathologic factors and prognosis. Trephines from 50 newly diagnosed MDS pa...
Saved in:
Published in: | Leukemia Vol. 15; no. 9; pp. 1369 - 1376 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing
01-09-2001
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considering the recently stated suggestion of neovascularization being implicated in myelodysplastic syndromes (MDS) pathogenesis, we evaluated multiple morphometric microvascular characteristics in MDS, in relation to clinicopathologic factors and prognosis. Trephines from 50 newly diagnosed MDS patients were immunostained for factor VIII and compared to those from 20 controls, 10 chronic myelomonocytic leukemia (CMML) and 12 acute myeloid leukemia (AML) patients. Quantitation of microvessel density (MVD), area, total vascular area (TVA), major and minor axis length, perimeter, compactness, shape factor, Feret diameter, and the number of branching vessels was performed by image analysis. Overall, the MDS group had significantly higher MVD, TVA, minor axis and shape factor values and significantly lower compactness than the control group. AML was characterized by increased vascularity compared to MDS and CMML, as well as by the presence of flattened microvessels (lower values of shape factor). Hypercellular MDS showed higher MVD. RA/RARS displayed larger caliber vessels than RAEB, which explains the favorable prognostic effect of increased size-related parameters on progression and/or survival. Moreover, decreased compactness and MVD were independent predictors of longer progression-free survival. It is concluded that angiogenesis is involved in the conversion of normal marrow to MDS and ultimately to AML and that disease progression within MDS is accompanied by qualitative alterations of the microvascular network. Furthermore, size-related parameters affect survival, while shape-related parameters and MVD are more influential with regard to progression-free survival. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0887-6924 1476-5551 |
DOI: | 10.1038/sj.leu.2402220 |