Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials
Multiferroic heterostructures can be synthesized by integrating monolithic ferroelectric and magnetic materials, with interfacial coupling between electric polarization and magnetization, through the exchange of elastic, electric, and magnetic energy. Although the nature of the interfaces remains to...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 28; no. 1; pp. 15 - 39 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Blackwell Publishing Ltd
06-01-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiferroic heterostructures can be synthesized by integrating monolithic ferroelectric and magnetic materials, with interfacial coupling between electric polarization and magnetization, through the exchange of elastic, electric, and magnetic energy. Although the nature of the interfaces remains to be unraveled, such cross coupling can be utilized to manipulate the magnetization (or polarization) with an electric (or magnetic) field, known as a converse (or direct) magnetoelectric effect. It can be exploited to significantly improve the performance of or/and add new functionalities to many existing or emerging devices such as memory devices, tunable microwave devices, sensors, etc. The exciting technological potential, along with the rich physical phenomena at the interface, has sparked intensive research on multiferroic heterostructures for more than a decade. Here, we summarize the most recent progresses in the fundamental principles and potential applications of the interface‐based magnetoelectric effect in multiferroic heterostructures, and present our perspectives on some key issues that require further study in order to realize their practical device applications.
Multiferroic heterostructures integrating ferroelectric and magnetic materials exhibit strong magnetoelectric coupling due to the complex interplay between spin, orbit, charge, and lattice order parameters across the hetero‐interface, which makes them technologically very attractive for the near future. Fundamental principles and potential device applications of magnetoelectric coupling in multiferroic heterostructures are reviewed using examples from recent reports. |
---|---|
Bibliography: | Tsinghua University - No. 2014z01006 istex:3A6A8469AD4B5AFB1EEE4B232B3966C3D449CA37 ark:/67375/WNG-7JDV2DKJ-8 ArticleID:ADMA201502824 NSF of China - No. 51332001; No. 11234005; No. 51221291; No. 51472140 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201502824 |