Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the ener...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 7; no. 1; p. 11818
Main Authors: Kawasaki, Seiji, Takahashi, Ryota, Yamamoto, Takahisa, Kobayashi, Masaki, Kumigashira, Hiroshi, Yoshinobu, Jun, Komori, Fumio, Kudo, Akihiko, Lippmaa, Mikk
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 03-06-2016
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO 3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range. Nanoscale designs are known to increase the energy conversion efficiency of photoelectrochemical water splitting. Here, the authors report a self-organized nanocomposite formed by embedding self-assembled metal nanopillars in a semiconductor thin film, for enhanced photocarrier separation efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms11818