Pulsed-field electrophoresis: application of a computer model to the separation of large DNA molecules
The biased reptation theory has been applied to the pulsed-field electrophoresis of DNA in agarose gels. A computer simulation of the theoretical model that calculates the mobility of large DNA molecules as a function of agarose pore size, DNA chain properties, and electric field conditions has been...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 84; no. 22; pp. 8011 - 8015 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
National Academy of Sciences of the United States of America
01-11-1987
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biased reptation theory has been applied to the pulsed-field electrophoresis of DNA in agarose gels. A computer simulation of the theoretical model that calculates the mobility of large DNA molecules as a function of agarose pore size, DNA chain properties, and electric field conditions has been used to generate mobility curves for DNA molecules in the size range of the larger yeast chromosomes. Pulsed-field electrophoresis experiments resulting in the establishment of an electrophoretic karyotype for yeast, where the mobility of the DNA fragments is a monotonic function of molecular size for the entire size range that is resolved (200-2200 kilobase pairs), has been compared to the theoretical mobility curves generated by the computer model. The various physical mechanisms and experimental conditions responsible for band inversion and improved electrophoretic separation are identified and discussed in the framework of the model. |
---|---|
Bibliography: | U10 F30 881153388 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.84.22.8011 |