Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: a Swiss-army-knife catalyst
Ultra-small and highly dispersive (< 10 nm) iron oxide hydroxide is characterized by some methods. The compound is an efficient and stable catalyst for alcohol oxidation, organic sulfide oxidation, and epoxidation of alkenes in the presence of H 2 O 2 . The electrochemical oxygen-evolution reacti...
Saved in:
Published in: | Scientific reports Vol. 11; no. 1; pp. 6642 - 10 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
23-03-2021
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultra-small and highly dispersive (< 10 nm) iron oxide hydroxide is characterized by some methods. The compound is an efficient and stable catalyst for alcohol oxidation, organic sulfide oxidation, and epoxidation of alkenes in the presence of H
2
O
2
. The electrochemical oxygen-evolution reaction of the iron oxide hydroxide is also tested under acidic, neutral, and alkaline conditions. In the presence of the iron oxide hydroxide, excellent conversions (75–100%) and selectivities of substrates (92–97%), depending on the nature of the sulfide, were obtained. Benzylalcohols having electron-donating and-withdrawing substituents in the aromatic ring were oxidized to produce the corresponding aldehydes with excellent conversion (65–89%) and selectivity (96–100%) using this iron oxide hydroxide. The conversion of styrene and cyclooctene toward the epoxidation in the presence of this catalyst are 60 and 53%, respectively. Water oxidation for the catalysts was investigated at pH 2, 6.7, 12, and 14. The onset of OER at pH 14 is observed with a 475 mV overpotential. At 585 mV overpotential, a current density of more than 0.18 mA/cm
2
and a turnover frequency of 1.5/h is observed. Operando high-resolution visible spectroscopy at pH 14, similar to previously reported investigations, shows that Fe(IV)=O is an intermediate for water oxidation. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-85672-x |