Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design
European eel populations have declined markedly in recent decades, caused in part by in-stream barriers, such as weirs and pumping stations, which disrupt the upstream migration of juvenile eels, or elvers, into rivers. Eel passes, narrow sloping channels lined with substrata that enable elvers to a...
Saved in:
Published in: | Royal Society open science Vol. 7; no. 1; p. 191505 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
The Royal Society
01-01-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | European eel populations have declined markedly in recent decades, caused in part by in-stream barriers, such as weirs and pumping stations, which disrupt the upstream migration of juvenile eels, or elvers, into rivers. Eel passes, narrow sloping channels lined with substrata that enable elvers to ascend, are one way to mitigate against these barriers. Currently, studded eel tiles are a popular substrate. This study is the first to evaluate the flow fields within studded eel tiles and to model the swimming performance of elvers using cellular automata (CA) and individual- (or agent-) based models. Velocities and flow depths predicted by a computational fluid dynamics model of studded eel tiles are first validated against published values for a single installation angle-discharge combination. The validated model is then used to compute three-dimensional flow fields for eel passes at five different installation angles and three inflow discharges. CA and individual-based models are employed to assess upstream passage efficiency for a range of elver sizes. The individual-based model approximates measured passage efficiencies better than the CA model. Passage efficiency is greatest for shallow slopes, low discharges and large elvers. Results are synthesized into an easy-to-understand graphic to help practitioners improve eel pass designs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.4787577. |
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.191505 |