The Coding of Temperature in the Drosophila Brain

Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next,...

Full description

Saved in:
Bibliographic Details
Published in:Cell Vol. 144; no. 4; pp. 614 - 624
Main Authors: Gallio, Marco, Ofstad, Tyler A., Macpherson, Lindsey J., Wang, Jing W., Zuker, Charles S.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 18-02-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next, we identify the hot-sensing neurons and show that hot and cold antennal receptors project onto distinct, but adjacent glomeruli in the Proximal-Antennal-Protocerebrum (PAP) forming a thermotopic map in the brain. We use two-photon imaging to reveal the functional segregation of hot and cold responses in the PAP, and show that silencing the hot- or cold-sensing neurons produces animals with distinct and discrete deficits in their behavioral responses to thermal stimuli. Together, these results demonstrate that dedicated populations of cells orchestrate behavioral responses to different temperature stimuli, and reveal a labeled-line logic for the coding of temperature information in the brain. [Display omitted] ► The antenna houses the Drosophila HOT and COLD temperature-sensing neurons ► The hot and cold cells project to separate brain targets in the Protocerebrum (PAP) ► Two-photon calcium imaging reveals a spatial map of temperature in the PAP ► Functional studies show labeled lines for processing thermal signals in the fly brain
Bibliography:http://dx.doi.org/10.1016/j.cell.2011.01.028
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2011.01.028