Succinate mediates inflammation-induced adrenocortical dysfunction

The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal...

Full description

Saved in:
Bibliographic Details
Published in:eLife Vol. 12
Main Authors: Mateska, Ivona, Witt, Anke, Hagag, Eman, Sinha, Anupam, Yilmaz, Canelif, Thanou, Evangelia, Sun, Na, Kolliniati, Ourania, Patschin, Maria, Abdelmegeed, Heba, Henneicke, Holger, Kanczkowski, Waldemar, Wielockx, Ben, Tsatsanis, Christos, Dahl, Andreas, Walch, Axel Karl, Li, Ka Wan, Peitzsch, Mirko, Chavakis, Triantafyllos, Alexaki, Vasileia Ismini
Format: Journal Article
Language:English
Published: England eLife Science Publications, Ltd 14-07-2023
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal gland to adrenocorticotropic hormone (ACTH), although the underlying mechanisms are poorly understood. Here, we show by transcriptomic, proteomic, and metabolomic analyses that LPS-induced systemic inflammation triggers profound metabolic changes in steroidogenic adrenocortical cells, including downregulation of the TCA cycle and oxidative phosphorylation, in mice. Inflammation disrupts the TCA cycle at the level of succinate dehydrogenase (SDH), leading to succinate accumulation and disturbed steroidogenesis. Mechanistically, IL-1β reduces SDHB expression through upregulation of DNA methyltransferase 1 (DNMT1) and methylation of the promoter. Consequently, increased succinate levels impair oxidative phosphorylation and ATP synthesis and enhance ROS production, leading to reduced steroidogenesis. Together, we demonstrate that the IL-1β-DNMT1-SDHB-succinate axis disrupts steroidogenesis. Our findings not only provide a mechanistic explanation for adrenal dysfunction in severe inflammation, but also offer a potential target for therapeutic intervention.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.83064