Platelet-derived Growth Factor Selectively Inhibits NR2B-containing N-Methyl-D-aspartate Receptors in CA1 Hippocampal Neurons

Platelet-derived growth factor (PDGF) β receptor activation inhibits N-methyl-d-aspartate (NMDA)-evoked currents in hippocampal and cortical neurons via the activation of phospholipase Cγ, PKC, the release of intracellular calcium, and a rearrangement of the actin cytoskeleton. In the hippocampus, t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 284; no. 12; pp. 8054 - 8063
Main Authors: Beazely, Michael A., Lim, Aeni, Li, Hongbin, Trepanier, Catherine, Chen, XuanMao, Sidhu, Bikram, MacDonald, John F.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 20-03-2009
American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Platelet-derived growth factor (PDGF) β receptor activation inhibits N-methyl-d-aspartate (NMDA)-evoked currents in hippocampal and cortical neurons via the activation of phospholipase Cγ, PKC, the release of intracellular calcium, and a rearrangement of the actin cytoskeleton. In the hippocampus, the majority of NMDA receptors are heteromeric; most are composed of 2 NR1 subunits and 2 NR2A or 2 NR2B subunits. Using NR2B- and NR2A-specific antagonists, we demonstrate that PDGF-BB treatment preferentially inhibits NR2B-containing NMDA receptor currents in CA1 hippocampal neurons and enhances long-term depression in an NR2B subunit-dependent manner. Furthermore, treatment of hippocampal slices or cultures with PDGF-BB decreases the surface localization of NR2B but not of NR2A subunits. PDGFβ receptors colocalize to a higher degree with NR2B subunits than with NR2A subunits. After neuronal injury, PDGFβ receptors and PDGF-BB are up-regulated and PDGFβ receptor activation is neuroprotective against glutamate-induced neuronal damage in cultured neurons. We demonstrate that the neuroprotective effects of PDGF-BB are occluded by the NR2B antagonist, Ro25-6981, and that PDGF-BB promotes NMDA signaling to CREB and ERK1/2. We conclude that PDGFβR signaling, by preferentially targeting NR2B receptors, provides an important mechanism for neuroprotection by growth factors in the central nervous system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M805384200