Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation
Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was s...
Saved in:
Published in: | Immunity (Cambridge, Mass.) Vol. 40; no. 1; pp. 40 - 50 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
16-01-2014
Elsevier Limited Cell Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.
•Repeated acute resolving inflammation leads to excessive tissue damage•IL-6 regulates profibrotic IFN-γ-secreting T cells•IFN-γ increases detrimental STAT1 signaling in stromal tissue•STAT1 activity alters homeostatic control of extracellular matrix to promote fibrosis |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Present address: School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland These authors contributed equally to this work These authors contributed equally to this work and are co-senior authors Present address: Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland |
ISSN: | 1074-7613 1097-4180 |
DOI: | 10.1016/j.immuni.2013.10.022 |