Decoding the temporal dynamics of affective scene processing
•Temporal dynamics of affective scene processing was investigated with MVPA.•Perceptual processing of affective scenes began in visual cortex ∼100 ms.•Affect-specific neural representations emerged between ∼200 ms to ∼300 ms.•Affect-specific neural representations were sustained.•Sustained represent...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Vol. 261; p. 119532 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-11-2022
Elsevier Limited Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Temporal dynamics of affective scene processing was investigated with MVPA.•Perceptual processing of affective scenes began in visual cortex ∼100 ms.•Affect-specific neural representations emerged between ∼200 ms to ∼300 ms.•Affect-specific neural representations were sustained.•Sustained representations may be supported by recurrent neural interactions.
Natural images containing affective scenes are used extensively to investigate the neural mechanisms of visual emotion processing. Functional fMRI studies have shown that these images activate a large-scale distributed brain network that encompasses areas in visual, temporal, and frontal cortices. The underlying spatial and temporal dynamics, however, remain to be better characterized. We recorded simultaneous EEG-fMRI data while participants passively viewed affective images from the International Affective Picture System (IAPS). Applying multivariate pattern analysis to decode EEG data, and representational similarity analysis to fuse EEG data with simultaneously recorded fMRI data, we found that: (1) ∼80 ms after picture onset, perceptual processing of complex visual scenes began in early visual cortex, proceeding to ventral visual cortex at ∼100 ms, (2) between ∼200 and ∼300 ms (pleasant pictures: ∼200 ms; unpleasant pictures: ∼260 ms), affect-specific neural representations began to form, supported mainly by areas in occipital and temporal cortices, and (3) affect-specific neural representations were stable, lasting up to ∼2 s, and exhibited temporally generalizable activity patterns. These results suggest that affective scene representations in the brain are formed temporally in a valence-dependent manner and may be sustained by recurrent neural interactions among distributed brain areas. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2022.119532 |