Ongoing expansion of the worldwide invader Didemnum vexillum (Ascidiacea) in the Mediterranean Sea: high plasticity of its biological cycle promotes establishment in warm waters
Non-indigenous ascidians are of particular concern to aquaculture industry and, paradoxically, the activities associated with it represent an important way to translocate these species worldwide. In 2012 a non-indigenous ascidian was found covering the oyster crops in the Ebro Delta (Western Mediter...
Saved in:
Published in: | Biological invasions Vol. 17; no. 7; pp. 2075 - 2085 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-07-2015
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-indigenous ascidians are of particular concern to aquaculture industry and, paradoxically, the activities associated with it represent an important way to translocate these species worldwide. In 2012 a non-indigenous ascidian was found covering the oyster crops in the Ebro Delta (Western Mediterranean). We have identified the ascidian genetically and morphologically as
Didemnum vexillum
Kott, 2002. This finding indicates that the species is currently expanding its distribution in the Mediterranean Sea, as it has recently been found in the eastern basin (Venice, Adriatic Sea). Introduced populations of
D. vexillum
are found in temperate and cold waters worldwide, and a successful establishment in the Mediterranean implies a remarkable capacity of adaptability to warm, subtropical conditions. We assessed the life cycle (growth and reproduction) of the ascidian at the studied site. The species has a marked seasonal cycle, with regression in the warmest months and reappearance during winter. In spring
D. vexillum
reaches its maximum abundance, followed by a peak in reproduction just before regression. This cycle is reversed with respect to the one observed in colder waters, highlighting a plastic biological cycle of this invader and an hitherto unknown ability to establish itself in warm waters. We also analysed the genetic structure of the population of the Ebro Delta and the one established in the Lagoon of Venice using
COI
sequence data. The low genetic diversity in our samples (three haplotypes) was consistent with what is observed in the introduced populations worldwide. It is likely that the ascidian was introduced with oyster stock from bivalve cultures in the Atlantic French coasts, where the same three haplotypes have been reported. The high boating activity in the Ebro Delta makes further human-mediated transport of the species highly likely, and nearby fishing grounds can be severely affected if invaded. It is urgent to implement measures to prevent the continuous expansion of this ascidian pest in the Mediterranean. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1387-3547 1573-1464 |
DOI: | 10.1007/s10530-015-0861-z |