Notch1 Pathway Activation Results from the Epigenetic Abrogation of Notch-Related MicroRNAs in Mycosis Fungoides
Notch is a family of transmembrane receptors that participate in the regulation of cell differentiation, proliferation, and stemness. Notch pathway activation has also been found associated with different human cancers including primary cutaneous T-cell lymphomas (CTCL). The elucidation of the mecha...
Saved in:
Published in: | Journal of investigative dermatology Vol. 135; no. 12; pp. 3144 - 3152 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-12-2015
Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Notch is a family of transmembrane receptors that participate in the regulation of cell differentiation, proliferation, and stemness. Notch pathway activation has also been found associated with different human cancers including primary cutaneous T-cell lymphomas (CTCL). The elucidation of the mechanisms driving Notch activation in these particular diseases has remained elusive. Here we studied the possibility that DNA methylation at Notch pathway gene promoters and/or deregulation of Notch-associated microRNAs contribute to activate Notch in mycosis fungoides (MF). By genome-wide DNA methylation analysis, we failed to detect any consistent methylation at the Notch1, the Notch-ligand Jagged1, or the Notch-target Hes1 gene promoters, but found a significant methylation of the Notch-related microRNAs, in particular miR-200c and miR-124. Downregulation of miR-200c is associated with overexpression of Jagged1, concomitant to Notch1 activation. CTCL cell lines were infected with lentiviral vector encoding for miR-200c and ectopic expression of miR-200c in CTCL lines resulted in Jagged1 protein downregulation associated with a reduction in the levels of active Notch1. Our study deciphers an epigenetic mechanism regulating the Notch pathway in (MF) that might contribute to the future design of more specific therapeutic strategies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1038/jid.2015.328 |