Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells
Malignant pleural mesothelioma (MPM) is resistant to chemotherapy and thus shows a dismal prognosis. Osteopontin (OPN), a secreted noncollagenous and phosphoprotein, is suggested to be involved in the pathogenesis of MPM. However, the precise role of OPN, especially in the multidrug resistance of MP...
Saved in:
Published in: | Oncogene Vol. 29; no. 13; pp. 1941 - 1951 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-04-2010
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Malignant pleural mesothelioma (MPM) is resistant to chemotherapy and thus shows a dismal prognosis. Osteopontin (OPN), a secreted noncollagenous and phosphoprotein, is suggested to be involved in the pathogenesis of MPM. However, the precise role of OPN, especially in the multidrug resistance of MPM, remains to be elucidated. We therefore established stable transfectants (ACC-MESO-1/OPN), which constitutively express OPN, to determine its role in the chemoresistance observed in MPM. The introduction of the OPN gene provides MPM cells with upregulated multidrug resistance through the mechanism of enhanced hyaluronate (HA) binding. The expression of CD44 variant isoforms, which inhibit HA binding, significantly decreased in ACC–MESO–1/OPN cells in comparison to control transfectants. Interestingly, the inhibition of the HA-CD44 interaction abrogated multidrug resistance in the ACC–MESO–1/OPN, thus suggesting the involvement of the surviving signal emanating from the HA-CD44 interaction. An enhanced level of the p-Akt in ACC–MESO–1/OPN cells was observed, and was diminished by CD44 siRNA. Inhibition of the Akt phosphorylation increased in number of the cells underwent apoptosis induced by NVB, VP-16 and GEM. Collectively, these results indicate that OPN is strongly involved in multidrug resistance by enhancing the CD44 binding to HA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2009.478 |