Inhibition or deletion of angiotensin II type 1 receptor suppresses elastase-induced experimental abdominal aortic aneurysms

Abstract Objective Angiotensin (Ang) II type 1 receptor (AT1) activation is essential for the development of exogenous Ang II-induced abdominal aortic aneurysms (AAAs) in hyperlipidemic animals. Experimental data derived from this modeling system, however, provide limited insight into the role of en...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vascular surgery Vol. 67; no. 2; pp. 573 - 584.e2
Main Authors: Xuan, Haojun, MD, Xu, Baohui, MD, PhD, Wang, Wei, MD, PhD, Tanaka, Hiroki, MD, PhD, Fujimura, Naoki, MD, PhD, Miyata, Masaaki, MD, PhD, Michie, Sara A., MD, Dalman, Ronald L., MD
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-02-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objective Angiotensin (Ang) II type 1 receptor (AT1) activation is essential for the development of exogenous Ang II-induced abdominal aortic aneurysms (AAAs) in hyperlipidemic animals. Experimental data derived from this modeling system, however, provide limited insight into the role of endogenous Ang II in aneurysm pathogenesis. Consequently, the potential translational value of AT1 inhibition in clinical AAA disease management remains incompletely understood on the basis of the existing literature. Methods AAAs were created in wild-type (WT) and AT1a knockout (KO) mice by intra-aortic infusion of porcine pancreatic elastase (PPE). WT mice were treated with the AT1 receptor antagonist telmisartan, 10 mg/kg/d in chow, or the peroxisome proliferator-activated receptor γ (PPARγ) antagonist GW9662, 3 mg/kg/d through oral gavage, beginning 1 week before or 3 days after PPE infusion. Influences on aneurysm progression as well as mechanistic insights into AT1-mediated pathogenic processes were determined using noninvasive ultrasound imaging, histopathology, aortic gene expression profiling, and flow cytometric analysis. Results After PPE infusion, aortic enlargement was almost completely abrogated in AT1a KO mice compared with WT mice. As defined by a ≥50% increase in aortic diameter, no PPE-infused, AT1a KO mouse actually developed an AAA. On histologic evaluation, medial smooth muscle cellularity and elastic lamellae were preserved in AT1a KO mice compared with WT mice, with marked attenuation of mural angiogenesis and leukocyte infiltration. In WT mice, telmisartan administration effectively suppressed aneurysm pathogenesis after PPE infusion as well, regardless of whether treatment was initiated before or after aneurysm creation or continued for a limited or extended time. Telmisartan treatment was associated with reduced messenger RNA levels for CCL5 and matrix metalloproteinases 2 and 9 in aneurysmal aortae, with no apparent effect on PPARγ-regulated gene expression. Administration of the PPARγ antagonist GW9662 failed to “rescue” the aneurysm phenotype in telmisartan-treated, PPE-infused WT mice. Neither effector T-cell differentiation nor regulatory T-cell cellularity was affected by telmisartan treatment status. Conclusions Telmisartan effectively suppresses the progression of elastase-induced AAAs without apparent effect on PPARγ activation or T-cell differentiation. These findings reinforce the critical importance of endogenous AT1 activation in experimental AAA pathogenesis and reinforce the translational potential of AT1 inhibition in medical aneurysm disease management.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
HX and BX contributed equally to this article and share co-first authorship.
ISSN:0741-5214
1097-6809
DOI:10.1016/j.jvs.2016.12.110