Fibroin-Gelatin Composite Stimulates the Regeneration of a Splinted Full-Thickness Skin Wound in Mice
The effects of composite fibroin-gelatin microparticles (100-250 μ) on the rate of wound healing and regeneration under conditions of contraction prevention were studied on the model of splinted full-thickness skin wound in a mouse. Subcutaneous injection of these particles into the defect area acce...
Saved in:
Published in: | Bulletin of experimental biology and medicine Vol. 168; no. 1; pp. 95 - 98 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-11-2019
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of composite fibroin-gelatin microparticles (100-250 μ) on the rate of wound healing and regeneration under conditions of contraction prevention were studied on the model of splinted full-thickness skin wound in a mouse. Subcutaneous injection of these particles into the defect area accelerated wound healing and promoted re-epithelialization and recovery of normal structure of the epidermis. In addition, the composite microparticles promoted the formation of connective tissue of characteristic structure, replacing the derma over the entire defect, and stimulated regeneration of subcutaneous muscle (panniculus carnosus) and skin appendages (sebaceous glands and hair follicles). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0007-4888 1573-8221 |
DOI: | 10.1007/s10517-019-04656-0 |