Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency
Lung disease progression in alpha-1 antitrypsin deficiency (AATD) is heterogenous and manifests in different ways. Blood biomarkers are an attractive method of monitoring diseases as they are easy to obtain and repeatable. In non-AATD COPD, blood biomarker panels have predicted disease severity, pro...
Saved in:
Published in: | Biomedicines Vol. 11; no. 7; p. 2001 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-07-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lung disease progression in alpha-1 antitrypsin deficiency (AATD) is heterogenous and manifests in different ways. Blood biomarkers are an attractive method of monitoring diseases as they are easy to obtain and repeatable. In non-AATD COPD, blood biomarker panels have predicted disease severity, progression, and mortality. We measured a panel of seven serum biomarkers in 200 AATD patients and compared levels between those with COPD and those without. We assessed whether biomarkers were associated with baseline lung function parameters (FEV1 and TLco) or absolute change in these parameters. In total, 111 patients with a severely deficient genotype of AATD (PiZZ) and COPD were included in the analyses. Pearson's correlation coefficient was measured for biomarker correlations and models were compared using ANOVA. CRP and CCL18 were significantly higher in the serum of AATD COPD versus AATD with no COPD. Biomarkers were not predictive of cross-sectional lung function measurements, however, CC16 was significantly associated with an absolute change in TLco (
= 0.018). An addition of biomarkers to the predictive model for TLco added significant value over covariates alone (R
0.13 vs. 0.02,
= 0.028). Our findings suggest that CC16 is predictive of emphysema progression in AATD COPD. Proteomics data may reveal alternative candidate biomarkers and further work should include the use of longitudinal biomarker measurements. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2227-9059 2227-9059 |
DOI: | 10.3390/biomedicines11072001 |