Fast Approximations of Shift-Variant Blur
Image deblurring is essential in high resolution imaging, e.g., astronomy, microscopy or computational photography. Shift-invariant blur is fully characterized by a single point-spread-function (PSF). Blurring is then modeled by a convolution, leading to efficient algorithms for blur simulation and...
Saved in:
Published in: | International journal of computer vision Vol. 115; no. 3; pp. 253 - 278 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-12-2015
Springer Springer Nature B.V Springer Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Image deblurring is essential in high resolution imaging, e.g., astronomy, microscopy or computational photography. Shift-invariant blur is fully characterized by a single point-spread-function (PSF). Blurring is then modeled by a convolution, leading to efficient algorithms for blur simulation and removal that rely on fast Fourier transforms. However, in many different contexts, blur cannot be considered constant throughout the field-of-view, and thus necessitates to model variations of the PSF with the location. These models must achieve a trade-off between the accuracy that can be reached with their flexibility, and their computational efficiency. Several fast approximations of blur have been proposed in the literature. We give a unified presentation of these methods in the light of matrix decompositions of the blurring operator. We establish the connection between different computational tricks that can be found in the literature and the physical sense of corresponding approximations in terms of equivalent PSFs, physically-based approximations being preferable. We derive an improved approximation that preserves the same desirable low complexity as other fast algorithms while reaching a minimal approximation error. Comparison of theoretical properties and empirical performances of each blur approximation suggests that the proposed general model is preferable for approximation and inversion of a known shift-variant blur. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0920-5691 1573-1405 |
DOI: | 10.1007/s11263-015-0817-x |