Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration

[Display omitted] The role of Platelet Lysates (PLs) as a source of growth factors (GFs) and as main element of three-dimensional (3D) hydrogels has been previously described. However, the resulting hydrogels usually suffer from high degree of contraction, limiting their usefulness. This work descri...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia Vol. 19; pp. 56 - 65
Main Authors: Santo, Vítor E., Popa, Elena G., Mano, João F., Gomes, Manuela E., Reis, Rui L.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-06-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] The role of Platelet Lysates (PLs) as a source of growth factors (GFs) and as main element of three-dimensional (3D) hydrogels has been previously described. However, the resulting hydrogels usually suffer from high degree of contraction, limiting their usefulness. This work describes the development of a stable biomimetic 3D hydrogel structure based on PLs, through the spontaneous assembling of a high concentration of chitosan-chondroitin sulfate nanoparticles (CH/CS NPs) with PLs loaded by adsorption. The interactions between the NPs and the lysates resemble the ones observed in the extracellular matrix (ECM) native environment between glycosaminoglycans and ECM proteins. In vitro release studies were carried out focusing on the quantification of PDGF-BB and TGF-β1 GFs. Human adipose derived stem cells (hASCs) were entrapped in these 3D hydrogels and cultured in vitro under chondrogenic stimulus, in order to assess their potential use for cartilage regeneration. Histological, immunohistological and gene expression analysis demonstrated that the PL-assembled constructs entrapping hASCs exhibited results similar to the positive control (hASCS cultured in pellets), concerning the levels of collagen II expression and immunolocalization of collagen type I and II and aggrecan. Moreover, the deposition of new cartilage ECM was detected by alcian blue and safranin-O positive stainings. This work demonstrates the potential of PLs to act simultaneously as a source/carrier of GFs and as a 3D structure of support, through the application of a “bottom-up” approach involving the assembly of NPs, resulting in an enriched construct for cartilage regeneration applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2015.03.015