Inverse Velocity Dependence of Vibrationally Promoted Electron Emission from a Metal Surface
All previous experimental and theoretical studies of molecular interactions at metal surfaces show that electronically nonadiabatic influences increase with molecular velocity. We report the observation of a nonadiabatic electronic effect that follows the opposite trend: The probability of electron...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 321; no. 5893; pp. 1191 - 1194 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Association for the Advancement of Science
29-08-2008
The American Association for the Advancement of Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All previous experimental and theoretical studies of molecular interactions at metal surfaces show that electronically nonadiabatic influences increase with molecular velocity. We report the observation of a nonadiabatic electronic effect that follows the opposite trend: The probability of electron emission from a low-work function surface--Au(111) capped by half a monolayer of Cs--increases as the velocity of the incident NO molecule decreases during collisions with highly vibrationally excited NO(X²π[fraction one₋half], V = 18; V is the vibrational quantum number of NO), reaching 0.1 at the lowest velocity studied. We show that these results are consistent with a vibrational autodetachment mechanism, whereby electron emission is possible only beyond a certain critical distance from the surface. This outcome implies that important energy-dissipation pathways involving nonadiabatic electronic excitations and, furthermore, not captured by present theoretical methods may influence reaction rates at surfaces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1160040 |