High-Temperature Ethanol Fermentation and Transformation with Linear DNA in the Thermotolerant Yeast Kluyveromyces marxianus DMKU3-1042
We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same condit...
Saved in:
Published in: | Applied and Environmental Microbiology Vol. 74; no. 24; pp. 7514 - 7521 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Society for Microbiology
01-12-2008
American Society for Microbiology (ASM) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growth and ethanol production at 45°C. This strain, but not S. cerevisiae, utilized cellobiose, xylose, xylitol, arabinose, glycerol, and lactose. To develop a K. marxianus DMKU3-1042 derivative strain suitable for genetic engineering, a uracil auxotroph was isolated and transformed with a linear DNA of the S. cerevisiae ScURA3 gene. Surprisingly, Ura⁺ transformants were easily obtained. By Southern blot hybridization, the linear ScURA3 DNA was found to have inserted randomly into the K. marxianus genome. Sequencing of one Lys⁻ transformant confirmed the disruption of the KmLYS1 gene by the ScURA3 insertion. A PCR-amplified linear DNA lacking K. marxianus sequences but containing an Aspergillus α-amylase gene under the control of the ScTDH3 promoter together with an ScURA3 marker was subsequently used to transform K. marxianus DMKU3-1042 in order to obtain transformants expressing Aspergillus α-amylase. Our results demonstrate that K. marxianus DMKU3-1042 can be an alternative cost-effective bioethanol producer and a host for transformation with linear DNA by use of S. cerevisiae-based molecular genetic tools. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Corresponding author. Mailing address: Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube 755-8611, Japan. Phone: 81 836 85 9292. Fax: 81 836 85 9201. E-mail: rinji@yamaguchi-u.ac.jp |
ISSN: | 0099-2240 1098-5336 1098-6596 |
DOI: | 10.1128/AEM.01854-08 |