Co-packaged optics (CPO): status, challenges, and solutions
Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slow...
Saved in:
Published in: | Frontiers of Optoelectronics (Online) Vol. 16; no. 1; p. 1 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Beijing
Higher Education Press
20-03-2023
Springer & Higher Education Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slower rate than that of datacenter traffic. The gap between application requirements and the capability of conventional pluggable optics keeps increasing, a trend that is unsustainable. Copackaged optics (CPO) is a disruptive approach to increasing the interconnecting bandwidth density and energy efficiency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics. CPO is widely regarded as a promising solution for future datacenter interconnections, and silicon platform is the most promising platform for large-scale integration. Leading international companies (e.g., Intel, Broadcom and IBM) have heavily investigated in CPO technology, an inter-disciplinary research field that involves photonic devices, integrated circuits design, packaging, photonic device modeling, electronic-photonic co-simulation, applications, and standardization. This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform, identify the key challenges, and point out the potential solutions, hoping to encourage collaboration between different research fields to accelerate the development of CPO technology. |
---|---|
Bibliography: | Document received on :2022-06-09 External laser Optical power delivery High-performance computing Advanced packaging Document accepted on :2022-08-22 Standardization Transmitter Silicon photonics Receiver Co-simulation Co-packaged optics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2095-2759 2095-2767 2095-2767 |
DOI: | 10.1007/s12200-022-00055-y |