The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish

Abstract Adult zebrafish, by virtue of exhibiting spontaneous recovery after spinal lesion, have evolved into a paradigmatic vertebrate model system to identify novel genes vital for successful regeneration after spinal cord injury. Due to a remarkable level of conservation between zebrafish and hum...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience Vol. 183; pp. 238 - 250
Main Authors: Yu, Y.-M, Cristofanilli, M, Valiveti, A, Ma, L, Yoo, M, Morellini, F, Schachner, M
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 02-06-2011
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Adult zebrafish, by virtue of exhibiting spontaneous recovery after spinal lesion, have evolved into a paradigmatic vertebrate model system to identify novel genes vital for successful regeneration after spinal cord injury. Due to a remarkable level of conservation between zebrafish and human genomes, such genes, once identified, could point to possibilities for addressing the multiple issues on how to deal with functional recovery after spinal cord injury in humans. In the current study, the extracellular matrix glycoprotein tenascin-C was studied in the zebrafish spinal cord injury model to assess the often disparate functions of this multidomain molecule under in vivo conditions. This in vivo study was deemed necessary since in vitro studies had shown discrepant functional effects on neurite outgrowth: tenascin-C inhibits neurite outgrowth when presented as a molecular barrier adjacent to a conducive substrate, but enhances neurite outgrowth when presented as a uniform substrate. Thus, our current study addresses the question as to which of these features prevails in vivo : whether tenascin-C reduces or enhances axonal regrowth after injury in a well accepted vertebrate model of spinal cord injury. We show upregulation of tenascin-C expression in regenerating neurons of the nucleus of median longitudinal fascicle (NMLF) in the brainstem and spinal motoneurons. Inhibition of tenascin-C expression by antisense oligonucleotide (morpholino) resulted in impaired locomotor recovery, reduced regrowth of axons from brainstem neurons and reduced synapse formation by the regrowing brainstem axons on spinal motoneurons, all vital indicators of regeneration. Our results thus point to an advantageous role of tenascin-C in promoting spinal cord regeneration, by promoting axonal regrowth and synapse formation in the spinal cord caudal to the lesion site after injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2011.03.043