Do species' traits predict recent shifts at expanding range edges?

Ecology Letters (2011) 14: 677–689 Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species’ abilities to shi...

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters Vol. 14; no. 7; pp. 677 - 689
Main Authors: Angert, Amy L., Crozier, Lisa G., Rissler, Leslie J., Gilman, Sarah E., Tewksbury, Josh J., Chunco, Amanda J.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-07-2011
Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ecology Letters (2011) 14: 677–689 Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species’ abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading‐edge range shifts and species’ traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg‐laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait‐based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.
AbstractList Ecology Letters (2011) 14: 677–689 Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species’ abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading‐edge range shifts and species’ traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg‐laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait‐based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.Original Abstract: Ecology Letters (2011) 14: 677-689
Ecology Letters (2011) 14: 677-689 Abstract Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. [PUBLICATION ABSTRACT]
Author Chunco, Amanda J.
Angert, Amy L.
Crozier, Lisa G.
Tewksbury, Josh J.
Rissler, Leslie J.
Gilman, Sarah E.
Author_xml – sequence: 1
  givenname: Amy L.
  surname: Angert
  fullname: Angert, Amy L.
  email: amy.angert@colostate.edu
  organization: Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
– sequence: 2
  givenname: Lisa G.
  surname: Crozier
  fullname: Crozier, Lisa G.
  organization: Fish Ecology Division, Northwest Fisheries Science Center, Seattle, WA 98112, USA
– sequence: 3
  givenname: Leslie J.
  surname: Rissler
  fullname: Rissler, Leslie J.
  organization: Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
– sequence: 4
  givenname: Sarah E.
  surname: Gilman
  fullname: Gilman, Sarah E.
  organization: Joint Science Department, The Claremont Colleges, Claremont, CA 91711, USA
– sequence: 5
  givenname: Josh J.
  surname: Tewksbury
  fullname: Tewksbury, Josh J.
  organization: Biology Department, University of Washington, Seattle, WA 98115, USA
– sequence: 6
  givenname: Amanda J.
  surname: Chunco
  fullname: Chunco, Amanda J.
  organization: Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24322686$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21535340$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URNuBv1BZSFVXCX4kjrNAFZRpixjBAlARG8uPm6mHTBLsjDr99zjMMEhs8MZXvt-5uj7nFB11fQcIYUpyms6rVU4LQTPCCpkzQmlOqGAk3z5BJ4fG0aHm347RaYwrQiirK_oMHTNa8pIX5AS9fdfjOID1EC_wGLQfIx4COG9HHMBCN-J475v0qkcM20F3zndLHHS3BAxuCfHyOXra6DbCi_09Q1-v51-ubrPFp5v3V28WmS3TcplzTFTGgDTMMEqIcJRpamVBS-LqwhhnpWNQmEa6srEFK6vGai2cE0aXdcVn6GI3dwj9zw3EUa19tNC2uoN-E1WdZjJZs_-TUnJCuRAkkS__IVf9JnTpG0pWjNaSJftm6GwPbcwanBqCX-vwqP64mIDzPaCj1W2T3LE-_uUKzpiQInGvd9yDb-Hx0KdETamqlZoCU1N4akpV_U5VbdV8MZ-qpM92eh9H2B70OvxQouJVqe4-3qjPH8h3Iepbdcd_AQteo-Y
CitedBy_id crossref_primary_10_1111_gcb_12469
crossref_primary_10_1186_s13750_023_00296_0
crossref_primary_10_1111_ddi_13816
crossref_primary_10_1038_s41558_020_0770_8
crossref_primary_10_1111_jbi_12257
crossref_primary_10_1002_ecs2_4194
crossref_primary_10_1016_j_gecco_2015_07_012
crossref_primary_10_7717_peerj_1201
crossref_primary_10_1111_cobi_12166
crossref_primary_10_1111_ecog_03823
crossref_primary_10_1111_mec_12518
crossref_primary_10_1371_journal_pone_0192401
crossref_primary_10_1111_1365_2435_13095
crossref_primary_10_1111_gcb_13429
crossref_primary_10_1590_1676_0611_bn_2021_1204
crossref_primary_10_1111_1365_2656_12227
crossref_primary_10_1186_s40462_017_0104_2
crossref_primary_10_3390_biology12020316
crossref_primary_10_1016_j_limno_2015_10_005
crossref_primary_10_1111_gcb_12570
crossref_primary_10_1111_fwb_12874
crossref_primary_10_3389_fmars_2016_00062
crossref_primary_10_1038_s41437_023_00610_z
crossref_primary_10_1111_cobi_14310
crossref_primary_10_3390_f11090989
crossref_primary_10_1016_j_anbehav_2018_08_007
crossref_primary_10_1590_S0073_47212013000300010
crossref_primary_10_1111_ecog_03975
crossref_primary_10_1098_rspb_2012_1890
crossref_primary_10_1016_j_tree_2024_05_012
crossref_primary_10_1890_12_1407_1
crossref_primary_10_1111_jbi_12236
crossref_primary_10_1016_j_gecco_2019_e00874
crossref_primary_10_1038_s41598_019_51582_2
crossref_primary_10_1111_brv_12344
crossref_primary_10_3989_ajbm_597
crossref_primary_10_1111_ddi_12753
crossref_primary_10_1002_ece3_407
crossref_primary_10_3390_insects15050340
crossref_primary_10_3389_fevo_2023_1174495
crossref_primary_10_1007_s11258_020_01085_2
crossref_primary_10_1111_jbi_13795
crossref_primary_10_1111_cobi_14208
crossref_primary_10_7717_peerj_1410
crossref_primary_10_1038_s41477_020_0592_8
crossref_primary_10_1098_rsbl_2015_0001
crossref_primary_10_1111_ele_14367
crossref_primary_10_1111_gcb_13635
crossref_primary_10_1111_ddi_12769
crossref_primary_10_1111_ele_13396
crossref_primary_10_1111_gcb_12429
crossref_primary_10_1111_cobi_13281
crossref_primary_10_1111_1365_2656_13862
crossref_primary_10_1111_1365_2656_12655
crossref_primary_10_1098_rsif_2021_0488
crossref_primary_10_1038_s41467_020_16684_w
crossref_primary_10_1088_2515_7620_abf468
crossref_primary_10_1111_j_1600_0587_2012_07683_x
crossref_primary_10_3732_ajb_1300043
crossref_primary_10_1098_rstb_2017_0405
crossref_primary_10_1002_ece3_223
crossref_primary_10_1007_s12526_015_0375_z
crossref_primary_10_1371_journal_pone_0028535
crossref_primary_10_1111_gcb_13622
crossref_primary_10_1002_ece3_1052
crossref_primary_10_1002_ece3_2385
crossref_primary_10_1126_science_1239352
crossref_primary_10_1002_ece3_3477
crossref_primary_10_1111_geb_12818
crossref_primary_10_1186_s40462_021_00294_2
crossref_primary_10_1007_s11258_016_0603_z
crossref_primary_10_1002_ecy_3095
crossref_primary_10_1007_s10531_019_01769_w
crossref_primary_10_1111_brv_12777
crossref_primary_10_1016_j_biocon_2023_109929
crossref_primary_10_1111_eva_12004
crossref_primary_10_1371_journal_pclm_0000320
crossref_primary_10_1002_ece3_699
crossref_primary_10_1016_j_ecss_2020_106692
crossref_primary_10_1111_ele_12286
crossref_primary_10_1002_ecs2_3043
crossref_primary_10_1093_aob_mcv158
crossref_primary_10_1371_journal_pone_0130488
crossref_primary_10_1111_ibi_12732
crossref_primary_10_1098_rstb_2011_0422
crossref_primary_10_1007_s10841_014_9709_6
crossref_primary_10_1111_j_1365_2656_2012_01958_x
crossref_primary_10_1111_ddi_12793
crossref_primary_10_1016_j_ppees_2014_05_005
crossref_primary_10_1126_science_1237190
crossref_primary_10_1890_14_1661_1
crossref_primary_10_1371_journal_pone_0098361
crossref_primary_10_1556_ComEc_15_2014_2_2
crossref_primary_10_1111_1365_2656_12881
crossref_primary_10_1104_pp_112_206219
crossref_primary_10_1002_ecy_4287
crossref_primary_10_1002_ecs2_2061
crossref_primary_10_1038_s41467_018_04889_z
crossref_primary_10_1111_ele_13236
crossref_primary_10_1080_03949370_2022_2069159
crossref_primary_10_1080_15659801_2014_888825
crossref_primary_10_1111_ecog_00967
crossref_primary_10_1111_geb_12865
crossref_primary_10_1111_ddi_12564
crossref_primary_10_1080_24750263_2024_2304269
crossref_primary_10_1111_ele_12140
crossref_primary_10_1038_s41558_020_0872_3
crossref_primary_10_1007_s11284_017_1521_9
crossref_primary_10_1186_s40665_014_0001_5
crossref_primary_10_1016_j_ecolind_2014_07_038
crossref_primary_10_1016_j_gecco_2022_e02216
crossref_primary_10_1098_rstb_2012_0238
crossref_primary_10_1111_icad_12241
crossref_primary_10_1002_gch2_201800095
crossref_primary_10_1111_brv_12602
crossref_primary_10_1098_rstb_2012_0239
crossref_primary_10_1111_bij_12574
crossref_primary_10_1098_rspb_2014_2922
crossref_primary_10_1111_j_1365_2486_2012_02730_x
crossref_primary_10_1098_rspb_2014_0744
crossref_primary_10_1007_s11104_023_05896_w
crossref_primary_10_1007_s13593_014_0245_2
crossref_primary_10_1111_1365_2656_12181
crossref_primary_10_1371_journal_pclm_0000174
crossref_primary_10_1007_s00442_021_05094_4
crossref_primary_10_1111_ddi_12576
crossref_primary_10_1111_gcb_13148
crossref_primary_10_1016_j_avrs_2022_100039
crossref_primary_10_1038_s41559_023_02055_3
crossref_primary_10_1002_eap_2905
crossref_primary_10_1111_j_1600_0587_2012_07534_x
crossref_primary_10_1111_ele_13244
crossref_primary_10_1016_j_foreco_2018_10_040
crossref_primary_10_3390_fishes7040143
crossref_primary_10_1007_s12224_020_09362_8
crossref_primary_10_1139_er_2015_0072
crossref_primary_10_1016_j_gloenvcha_2014_03_009
crossref_primary_10_1111_gcb_12056
crossref_primary_10_1007_s10531_016_1053_6
crossref_primary_10_1111_cobi_12532
crossref_primary_10_1111_ddi_12346
crossref_primary_10_1111_ddi_12107
crossref_primary_10_1038_s41598_019_40784_3
crossref_primary_10_1111_geb_13819
crossref_primary_10_1111_jeb_12273
crossref_primary_10_1186_s40462_019_0159_3
crossref_primary_10_1007_s00442_013_2731_7
crossref_primary_10_1098_rspb_2014_1857
crossref_primary_10_1111_ecog_05070
crossref_primary_10_1371_journal_pone_0248712
crossref_primary_10_1038_s41467_019_12655_y
crossref_primary_10_1016_j_agee_2021_107565
crossref_primary_10_1038_nclimate3223
crossref_primary_10_1111_acv_12287
crossref_primary_10_1111_mec_13548
crossref_primary_10_1371_journal_pbio_3002361
crossref_primary_10_1890_ES14_00533_1
crossref_primary_10_1098_rspb_2019_0384
crossref_primary_10_1007_s10201_020_00624_0
crossref_primary_10_1186_s12898_017_0128_x
crossref_primary_10_3390_ani13081407
crossref_primary_10_1111_gcb_15221
crossref_primary_10_1111_icad_12450
crossref_primary_10_1002_ecy_4242
crossref_primary_10_1016_j_cbpa_2019_110532
crossref_primary_10_1038_s41598_020_71685_5
crossref_primary_10_1111_1365_2664_12256
crossref_primary_10_1111_gcb_14372
crossref_primary_10_1111_gcb_12026
crossref_primary_10_1111_een_12445
crossref_primary_10_1111_geb_12306
crossref_primary_10_1111_geb_12423
crossref_primary_10_1098_rspb_2013_3017
crossref_primary_10_1111_1365_2656_12373
crossref_primary_10_1007_s00300_024_03250_z
crossref_primary_10_1111_ddi_12007
crossref_primary_10_1111_mec_12207
crossref_primary_10_1007_s10695_015_0050_0
crossref_primary_10_1016_j_biocon_2013_10_005
crossref_primary_10_1002_ecy_3121
crossref_primary_10_1111_j_1365_2435_2012_01990_x
crossref_primary_10_1086_676590
crossref_primary_10_1111_geb_12662
crossref_primary_10_1111_geb_13752
crossref_primary_10_1007_s10531_017_1399_4
crossref_primary_10_1016_j_gecco_2020_e00915
crossref_primary_10_1111_oik_09098
crossref_primary_10_3390_d14090719
crossref_primary_10_1093_aob_mcad085
crossref_primary_10_1002_lno_11395
crossref_primary_10_7717_peerj_77
crossref_primary_10_1126_science_aaa4984
crossref_primary_10_1111_gcb_12499
crossref_primary_10_1111_geb_12774
crossref_primary_10_1002_ece3_622
crossref_primary_10_1007_s10641_016_0534_5
crossref_primary_10_1111_mec_13528
crossref_primary_10_1007_s00442_015_3525_x
crossref_primary_10_1038_s41467_023_39573_4
crossref_primary_10_1111_ele_12474
crossref_primary_10_1007_s10530_016_1065_x
crossref_primary_10_1111_j_1365_2486_2011_02571_x
crossref_primary_10_1890_14_2419_1
crossref_primary_10_1111_ddi_12130
crossref_primary_10_1111_ddi_13581
crossref_primary_10_1111_bij_12517
crossref_primary_10_1002_ecs2_2108
crossref_primary_10_1111_ele_13774
crossref_primary_10_1371_journal_pone_0166802
crossref_primary_10_1111_ddi_12263
crossref_primary_10_1111_geb_12521
crossref_primary_10_1111_geb_13610
crossref_primary_10_1002_ece3_3880
crossref_primary_10_1111_ecog_01871
crossref_primary_10_1111_nph_18172
crossref_primary_10_1002_ecy_3345
crossref_primary_10_1111_j_1600_0706_2013_00207_x
crossref_primary_10_1007_s10531_013_0590_5
crossref_primary_10_1086_704780
crossref_primary_10_3390_biology11071027
crossref_primary_10_3389_fcosc_2022_918873
crossref_primary_10_3390_d11030042
crossref_primary_10_1111_gcb_14581
crossref_primary_10_1111_j_1469_8137_2012_04230_x
crossref_primary_10_1111_gcb_16517
crossref_primary_10_1111_ddi_13126
crossref_primary_10_1007_s10980_015_0173_9
crossref_primary_10_1111_gcb_14458
crossref_primary_10_1371_journal_pone_0048863
crossref_primary_10_1007_s10750_017_3431_9
crossref_primary_10_3390_fire4010001
crossref_primary_10_1126_science_aaz9463
crossref_primary_10_1038_s41598_020_72427_3
crossref_primary_10_1111_icad_12491
crossref_primary_10_1111_1365_2435_13400
crossref_primary_10_1126_science_335_6068_538_a
crossref_primary_10_1111_geb_12105
crossref_primary_10_3897_BDJ_2_e1041
crossref_primary_10_1038_nclimate2086
crossref_primary_10_1111_1365_2745_12818
crossref_primary_10_1016_j_biocon_2018_01_002
crossref_primary_10_1111_mec_15111
crossref_primary_10_1016_j_ecolmodel_2018_10_023
crossref_primary_10_1098_rspb_2021_0823
crossref_primary_10_1111_ecog_05334
crossref_primary_10_1111_icad_12767
crossref_primary_10_1111_icad_12647
crossref_primary_10_1111_oik_05535
crossref_primary_10_3389_fevo_2018_00186
crossref_primary_10_3390_insects13010043
crossref_primary_10_1111_gcb_15054
crossref_primary_10_1111_gcb_16143
crossref_primary_10_1111_ele_13762
crossref_primary_10_1093_icb_ics067
crossref_primary_10_1016_j_scitotenv_2021_146896
crossref_primary_10_3897_natureconservation_34_30728
crossref_primary_10_1016_j_scitotenv_2021_149926
crossref_primary_10_1111_j_1600_0587_2013_00116_x
crossref_primary_10_3354_meps14349
crossref_primary_10_1111_gcb_15281
crossref_primary_10_1002_ecs2_4860
crossref_primary_10_1111_j_1365_2486_2012_02784_x
crossref_primary_10_1111_ddi_12050
crossref_primary_10_1111_gcb_15285
crossref_primary_10_1146_annurev_ecolsys_012021_092849
crossref_primary_10_1093_jhered_esx051
crossref_primary_10_1016_j_quascirev_2019_105886
crossref_primary_10_1007_s10531_016_1289_1
crossref_primary_10_1186_s12862_019_1548_3
crossref_primary_10_1002_wcc_551
crossref_primary_10_1111_fwb_13291
crossref_primary_10_1002_ecy_3300
crossref_primary_10_1038_s42003_023_04967_z
crossref_primary_10_1038_s41559_022_01979_6
crossref_primary_10_1098_rspb_2011_2367
crossref_primary_10_1111_1749_4877_12167
crossref_primary_10_1007_s10584_019_02549_9
crossref_primary_10_1016_j_baae_2022_06_005
crossref_primary_10_1038_s41598_023_38195_6
crossref_primary_10_1111_geb_12555
crossref_primary_10_1016_j_biocon_2023_110098
crossref_primary_10_1111_aec_12902
crossref_primary_10_1007_s10584_013_0820_6
crossref_primary_10_1111_ddi_12196
crossref_primary_10_3390_insects14080702
crossref_primary_10_1111_mec_13497
crossref_primary_10_1111_gcb_14169
crossref_primary_10_1002_ece3_7142
crossref_primary_10_1016_j_avrs_2022_100007
crossref_primary_10_1007_s10584_018_2294_z
crossref_primary_10_1016_j_tree_2015_12_014
crossref_primary_10_1038_nature12540
crossref_primary_10_1038_s43017_024_00527_z
crossref_primary_10_1371_journal_pone_0097718
crossref_primary_10_1890_11_2296_1
crossref_primary_10_1002_ecs2_1565
crossref_primary_10_1111_gcb_16220
crossref_primary_10_1007_s42974_022_00104_8
crossref_primary_10_1038_s41467_020_18740_x
crossref_primary_10_1890_ES11_00283_1
crossref_primary_10_1111_gcb_15008
crossref_primary_10_1016_j_palaeo_2021_110568
crossref_primary_10_1111_icad_12309
crossref_primary_10_1016_j_biocon_2011_10_019
crossref_primary_10_1007_s10531_022_02469_8
crossref_primary_10_3897_zookeys_482_8453
crossref_primary_10_1111_geb_12377
crossref_primary_10_1111_cobi_12522
crossref_primary_10_1016_j_actao_2016_01_005
crossref_primary_10_1016_j_biocon_2012_12_032
crossref_primary_10_1098_rstb_2018_0186
crossref_primary_10_3390_f11070738
crossref_primary_10_1111_ecog_00825
crossref_primary_10_1073_pnas_1706080114
crossref_primary_10_1098_rspb_2012_1051
crossref_primary_10_1371_journal_pone_0098907
crossref_primary_10_1016_j_dsr2_2014_04_007
crossref_primary_10_1111_gcb_15030
crossref_primary_10_3897_natureconservation_19_12681
crossref_primary_10_1073_pnas_1713936115
crossref_primary_10_1073_pnas_1804224115
crossref_primary_10_1073_pnas_1318190111
crossref_primary_10_1111_jse_12649
crossref_primary_10_1111_ecog_00931
crossref_primary_10_3390_d15020157
crossref_primary_10_1111_icad_12535
crossref_primary_10_1111_ibi_13136
crossref_primary_10_1111_eva_12347
crossref_primary_10_3390_ani11082457
crossref_primary_10_1080_00379271_2022_2099972
crossref_primary_10_3390_d14040302
crossref_primary_10_1016_j_avrs_2024_100162
crossref_primary_10_1111_ele_12945
crossref_primary_10_1111_geb_12189
crossref_primary_10_1016_j_foreco_2017_07_048
crossref_primary_10_1007_s10682_021_10111_2
crossref_primary_10_1111_nph_15554
crossref_primary_10_1038_s41597_023_02157_4
crossref_primary_10_1093_biolinnean_blaa147
crossref_primary_10_1111_ecog_01128
crossref_primary_10_1086_682210
crossref_primary_10_1111_btp_13133
crossref_primary_10_1111_ecog_04996
crossref_primary_10_1111_geb_12170
crossref_primary_10_1016_j_biocon_2016_07_030
crossref_primary_10_1002_ecy_2884
crossref_primary_10_1016_j_ecolind_2018_03_047
crossref_primary_10_1126_science_1247579
crossref_primary_10_1111_geb_12174
crossref_primary_10_1038_s41598_024_61595_1
crossref_primary_10_1111_cobi_14035
crossref_primary_10_1111_gcb_13736
crossref_primary_10_1007_s10531_023_02589_9
crossref_primary_10_1038_ncomms6053
crossref_primary_10_1038_s41559_020_1198_2
crossref_primary_10_1126_science_aad8466
crossref_primary_10_1126_science_1206432
crossref_primary_10_3120_0024_9637_62_2_115
crossref_primary_10_1098_rspb_2021_2755
crossref_primary_10_1111_jzs_12014
crossref_primary_10_1111_gcb_13847
crossref_primary_10_1002_ece3_11440
crossref_primary_10_1371_journal_pone_0122267
crossref_primary_10_1111_1365_2745_12782
crossref_primary_10_1111_jbi_14001
crossref_primary_10_1890_12_0251_1
crossref_primary_10_1111_geb_13246
crossref_primary_10_1111_1462_2920_13823
crossref_primary_10_1111_nyas_12184
crossref_primary_10_1111_ecog_04327
crossref_primary_10_1007_s00035_020_00243_6
crossref_primary_10_1111_ecog_05414
crossref_primary_10_1656_045_026_0304
crossref_primary_10_1111_1365_2745_12572
crossref_primary_10_1371_journal_pone_0065842
crossref_primary_10_1098_rstb_2021_0013
crossref_primary_10_1016_j_ecolmodel_2023_110481
crossref_primary_10_1007_s12080_016_0314_z
crossref_primary_10_1650_CONDOR_17_206_1
crossref_primary_10_1093_insilicoplants_diab029
crossref_primary_10_1093_jmammal_gyab077
crossref_primary_10_1111_aec_12163
crossref_primary_10_1139_cjz_2018_0010
crossref_primary_10_1002_wcc_271
crossref_primary_10_1038_nclimate2945
crossref_primary_10_1146_annurev_marine_010419_010916
crossref_primary_10_3955_046_093_0102
crossref_primary_10_1007_s11160_017_9479_9
crossref_primary_10_1016_j_biocon_2015_03_034
crossref_primary_10_1093_ornithology_ukad027
crossref_primary_10_1111_jeb_12669
crossref_primary_10_1017_S0025315417001382
crossref_primary_10_3389_fevo_2021_621749
crossref_primary_10_1111_1365_2745_13323
crossref_primary_10_1111_jbi_14336
crossref_primary_10_1016_j_ecolind_2016_06_013
crossref_primary_10_1111_j_1365_2699_2011_02647_x
crossref_primary_10_1016_j_tree_2018_07_005
crossref_primary_10_1111_j_1600_0587_2013_00282_x
crossref_primary_10_1038_s41467_019_12343_x
crossref_primary_10_1371_journal_pone_0088958
crossref_primary_10_1111_jbi_14325
crossref_primary_10_1007_s10841_018_0100_x
crossref_primary_10_1073_pnas_2307525121
crossref_primary_10_1016_j_jembe_2019_03_004
crossref_primary_10_1016_j_biocon_2013_09_020
crossref_primary_10_1038_s41437_023_00613_w
crossref_primary_10_1111_geb_12078
crossref_primary_10_1111_geb_12075
crossref_primary_10_1146_annurev_ecolsys_110411_160516
crossref_primary_10_3389_fenvs_2021_660163
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd/CNRS
2015 INIST-CNRS
2011 Blackwell Publishing Ltd/CNRS.
Copyright_xml – notice: 2011 Blackwell Publishing Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2011 Blackwell Publishing Ltd/CNRS.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
7U6
F1W
H95
L.G
SOI
7X8
DOI 10.1111/j.1461-0248.2011.01620.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Entomology Abstracts
MEDLINE - Academic
Entomology Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 689
ExternalDocumentID 2377045381
21535340
24322686
ELE1620
ark_67375_WNG_SK0Z669H_W
Genre article
Journal Article
Feature
GeographicLocations North America
GeographicLocations_xml – name: North America
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
AAMNL
C1K
H94
M7N
7ST
7U6
F1W
H95
L.G
SOI
7X8
ID FETCH-LOGICAL-c5620-dd267bbe8b2b21006d12a1c84150d94bbdc8d2e4bf8d5fc4257fcaa6dd6ba5973
IEDL.DBID 33P
ISSN 1461-023X
IngestDate Sat Aug 17 01:44:01 EDT 2024
Fri Aug 16 04:47:18 EDT 2024
Tue Nov 19 07:04:48 EST 2024
Sat Sep 28 08:00:33 EDT 2024
Sun Oct 22 16:03:13 EDT 2023
Sat Aug 24 00:57:19 EDT 2024
Wed Oct 30 09:55:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dynamical climatology
Climate change
Modification
Life history
range expansion
Dispersal
Global change
Planetary scale
global climate change
Expansion
Dispersion
Language English
License CC BY 4.0
2011 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5620-dd267bbe8b2b21006d12a1c84150d94bbdc8d2e4bf8d5fc4257fcaa6dd6ba5973
Notes ark:/67375/WNG-SK0Z669H-W
istex:06E0511F29C739B6FAFD8BB3CE6F9D28C35522CB
ArticleID:ELE1620
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1461-0248.2011.01620.x
PMID 21535340
PQID 872198202
PQPubID 32390
PageCount 13
ParticipantIDs proquest_miscellaneous_900628927
proquest_miscellaneous_883013660
proquest_journals_872198202
pubmed_primary_21535340
pascalfrancis_primary_24322686
wiley_primary_10_1111_j_1461_0248_2011_01620_x_ELE1620
istex_primary_ark_67375_WNG_SK0Z669H_W
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References McKinney, M.L. (1997). Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst., 28, 495-516.
Prinzing, A., Durka, W., Klotz, S. & Brandl, R. (2002). Which species become aliens? Evol. Ecol. Res., 4, 385-405.
Walker, K.J. & Preston, C.D. (2006). Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers. Conserv., 15, 1913-1942.
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett., 12, 334-350.
Broenniman, O., Thuiller, W., Hughes, G., Midgley, G.F., Alkemade, J.M.R. & Guisan, A. (2006). Do geographic distribution, niche property and life form explain plants' vulnerability to global change? Glob. Change Biol., 12, 1079-1093.
Durant, J.M., Hjermann, D.O., Ottersen, G. & Stenseth, N.C. (2007). Climate and the match or mismatch between predator requirements and resource availability. Climate Res., 33, 271-283.
Williams, S.E., Williams, Y.M., VanDerWal, J., Isaac, J.L., Shoo, L.P. & Johnson, C.N. (2009). Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proc. Natl Acad. Sci. USA, 106, 19737-19741.
Gilman, S.E., Wethey, D.S. & Helmuth, B. (2006). Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc. Natl Acad. Sci. USA, 103, 9560-9565.
Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat., 160, 712-726.
Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
Corbet, P.S., Suhling, F. & Soendgerath, D. (2006). Voltinism of Odonata: a review. Int. J. Odonatol., 9, 1-44.
Crozier, L. & Dwyer, G. (2006). Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat., 167, 853-866.
Herron, M.D., Castoe, T.A. & Parkinson, C.L. (2004). Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Mol. Phylogenet. Evol., 31, 1015-1030.
Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. et al. (2009). Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588-597.
Viscor, G. & Fuster, J.F. (1987). Relationships between morphological parameters in birds with different flying habitats. Comp. Biochem. Physiol., 87A, 231-249.
Erlich, P.R., Dobkin, D.S. & Wheye, D. (1988). The Birder's Handbook: A Field Guide to the Natural History of North American Birds. Simon & Shuster, New York.
Hijmans, R.J. & Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol., 12, 2272-2281.
Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. & Mynsberge, A.R. (2011). Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science, 331, 324-327.
R Core DevelopmentTeam (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Bybee, S.M., Ogden, T.H., Branham, M.A. & Whiting, M.F. (2008). Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics, 24, 477-514.
Holzinger, B., Hülber, K., Camenisch, M. & Grabherr, G. (2008). Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol., 195, 179-196.
Hickling, R., Roy, D.B., Hill, J.K., Fox, R. & Thomas, C.D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol., 12, 450-455.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 367-669.
Cadotte, M.W., Murray, B.R. & Lovett-Doust, J. (2006). Ecological patterns and biological invasions: using regional species inventories in macroecology. Biol. Invasions, 8, 809-821.
Ericson, P.G.P., Zuccon, D., Ohlson, J.I., Johansson, U.S., Alvarenga, H. & Prum, R.O. (2006). Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves : Tyrannida). Mol. Phylogenet. Evol., 40, 471-483.
Heikkinen, R.K., Luoto, M., Leikola, N., Pöyry, J., Settele, J., Kudrna, O. et al. (2010). Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv., 19, 695-723.
Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA, 106, 19729-19736.
Lenoir, J., Gegout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N.E. et al. (2010). Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33, 295-303.
Vall-llosera, M. & Sol, D. (2009). A global risk assessment for the success of bird introductions. J. Appl. Ecol., 46, 787-795.
Kolar, C.S. & Lodge, D.M. (2001). Progress in invasion biology: predicting invaders. Trends Ecol. Evol., 16, 199-204.
Perry, A.L., Low, P.J., Ellis, J.R. & Reynolds, J.D. (2005). Climate change and distribution shifts in marine fishes. Science, 308, 1912-1915.
Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R.H. et al. (2002). Future projections for Mexican faunas under global climate change scenarios. Nature, 416, 626-629.
Odum, H.T. & Allee, W.C. (1954). A note on the stable point of populations showing both intraspecific cooperation and disoperation. Ecology, 35, 95-97.
Collen, B., Bykova, E., Ling, S., Milner-Gulland, E.J. & Purvis, A. (2006). Extinction risk: a comparative analysis of central Asian vertebrates. Biodivers. Conserv., 15, 1859-1871.
Corbet, P.S. (1963). A Biology of Dragonflies. Quadrangle Books, Chicago.
Gardner, J.L., Heinsohn, R. & Joseph, L. (2009). Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. Lond. B Biol., 276, 3845-3852.
Tingley, R., Romagosa, C.M., Kraus, F., Bickford, D., Phillips, B.L. & Shine, R. (2010). The frog filter: amphibian introduction bias driven by taxonomy, body size and biogeography. Glob. Ecol. Biogeogr., 19, 496-503.
Brown, J.H., Mehlman, D.W. & Stevens, G.C. (1995). Spatial variation in abundance. Ecology, 76, 2028-2043.
Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B. & Hermy, M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett., 5, 525-530.
Pelini, S.L., Keppel, J.A., Kelley, A.E. & Hellmann, J.J. (2010). Adaptation to host plants may prevent rapid insect responses to climate change. Glob. Change Biol., 16, 2923-2929.
Hill, J.K., Thomas, C.D. & Huntley, B. (1999). Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proc. R. Soc. Lond. B Biol., 266, 1197-1206.
Visser, M.E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. Lond. B Biol., 275, 649-659.
Williamson, M. (1999). Invasions. Ecography, 22, 5-12.
Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. & Ackerly, D.D. (2009). The velocity of climate change. Nature, 462, 1052-1055.
Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J. et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763-1768.
Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst., 40, 81-102.
Mack, R.N. (1996). Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol. Conserv., 78, 107-121.
Higgins, S.I., Nathan, R. & Cain, M.L. (2003). Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology, 84, 1945-1956.
Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C. & Beissinger, S.R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322, 261-264.
Webb, C.O. & Donoghue, M.J. (2005). Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes, 5, 181-183.
van Kleunen, M., Weber, E. & Fischer, M. (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett., 13, 235-245.
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C. et al. (2004). Extinction risk from climate change. Nature, 427, 145-148.
Somero, G.N. (2010). The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. J. Exp. Biol., 213, 912-920.
Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P., Thompson, K., Sonnenschein, M. et al. (2008). The LEDA Traitbase: a database of life-history traits of Northwest European flora. J. Ecol., 96, 1266-1274.
Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A. & Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol., 6, 2621-2626.
Askew, R.R. (1988). The Dragonflies of Europe. Harley Books, Colchester.
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer-Verlag, New York.
Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P. & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771.
Nussey, D.H., Postma, E., Gienapp, P. & Visser, M.E. (2005). Selection on heritable phenotypic plasticity in a wild bird population. Science, 310, 304-306.
Piaggio, A.J. & Spicer, G.S. (2001). Molecular phylogeny of the chipmunks inferred from mitochondrial cyt
2004; 20
2004; 164
2009; 46
2010; 16
2009; 40
2010; 13
2010; 19
2006; 33
1995; 76
2006; 37
2003; 13
2009; 276
1999; 87
2008; 105
2008; 6
2008; 3
2007; 33
1996; 78
1998; 152
2009; 12
2004; 31
2010; 25
2001
2009; 90
1987
1986
2008; 24
2005; 308
1987; 87A
2001; 16
1998; 52
2003; 84
2008; 275
2006; 167
2008; 195
2009; 15
2001; 414
1988
2010; 33
2007; 446
2010; 35
2006; 12
2011; 80
2005; 310
2002; 5
2006; 9
2006; 15
2009
2006; 8
1997; 28
2007
1996
1999; 22
2002; 4
2005
2004
2003
2008; 96
2002; 416
2002
1999; 266
2008; 322
2008; 320
2004; 427
1958
2011; 331
2001; 20
2009; 78
2002; 160
2006; 40
2006; 87
2001; 4
1954; 35
2010; 213
1965
2009; 462
2005; 5
1963
2008; 89
2007; 88
2005; 11
2006; 103
2009; 106
References_xml – volume: 96
  start-page: 1266
  year: 2008
  end-page: 1274
  article-title: The LEDA Traitbase: a database of life‐history traits of Northwest European flora
  publication-title: J. Ecol.
– volume: 78
  start-page: 107
  year: 1996
  end-page: 121
  article-title: Predicting the identity and fate of plant invaders: emergent and emerging approaches
  publication-title: Biol. Conserv.
– volume: 87
  start-page: 185
  year: 1999
  end-page: 190
  article-title: What is the Allee effect?
  publication-title: Oikos
– volume: 15
  start-page: 1913
  year: 2006
  end-page: 1942
  article-title: Ecological predictors of extinction risk in the flora of lowland England, UK
  publication-title: Biodivers. Conserv.
– volume: 310
  start-page: 304
  year: 2005
  end-page: 306
  article-title: Selection on heritable phenotypic plasticity in a wild bird population
  publication-title: Science
– volume: 152
  start-page: 204
  year: 1998
  end-page: 224
  article-title: Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord
  publication-title: Am. Nat.
– volume: 195
  start-page: 179
  year: 2008
  end-page: 196
  article-title: Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates
  publication-title: Plant Ecol.
– volume: 20
  start-page: 289
  year: 2004
  end-page: 290
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– year: 2005
– volume: 89
  start-page: 1279
  year: 2008
  end-page: 1295
  article-title: The relationships of major lineages within peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal
  publication-title: J. Mammal.
– volume: 103
  start-page: 9560
  year: 2006
  end-page: 9565
  article-title: Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 320
  start-page: 1763
  year: 2008
  end-page: 1768
  article-title: A phylogenomic study of birds reveals their evolutionary history
  publication-title: Science
– volume: 275
  start-page: 649
  year: 2008
  end-page: 659
  article-title: Keeping up with a warming world; assessing the rate of adaptation to climate change
  publication-title: Proc. R. Soc. Lond. B Biol.
– volume: 13
  start-page: 1041
  year: 2010
  end-page: 1054
  article-title: Can mechanism inform species’ distribution models?
  publication-title: Ecol. Lett.
– start-page: 429
  year: 1987
  end-page: 453
– volume: 6
  start-page: 2621
  year: 2008
  end-page: 2626
  article-title: Towards an integrated framework for assessing the vulnerability of species to climate change
  publication-title: PLoS Biol.
– volume: 31
  start-page: 1015
  year: 2004
  end-page: 1030
  article-title: Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus)
  publication-title: Mol. Phylogenet. Evol.
– year: 1986
– volume: 80
  start-page: 235
  year: 2011
  end-page: 243
  article-title: Climate effects on population fluctuations of the white‐throated dipper
  publication-title: J. Anim. Ecol.
– volume: 37
  start-page: 367
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 5
  start-page: 163
  year: 2002
  end-page: 167
  article-title: Body size and invasion success in marine bivalves
  publication-title: Ecol. Lett.
– volume: 35
  start-page: 95
  year: 1954
  end-page: 97
  article-title: A note on the stable point of populations showing both intraspecific cooperation and disoperation
  publication-title: Ecology
– volume: 12
  start-page: 334
  year: 2009
  end-page: 350
  article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges
  publication-title: Ecol. Lett.
– volume: 84
  start-page: 1945
  year: 2003
  end-page: 1956
  article-title: Are long‐distance dispersal events in plants usually caused by nonstandard means of dispersal?
  publication-title: Ecology
– volume: 266
  start-page: 1197
  year: 1999
  end-page: 1206
  article-title: Climate and habitat availability determine 20th century changes in a butterfly’s range margin
  publication-title: Proc. R. Soc. Lond. B Biol.
– volume: 13
  start-page: 235
  year: 2010
  end-page: 245
  article-title: A meta‐analysis of trait differences between invasive and non‐invasive plant species
  publication-title: Ecol. Lett.
– volume: 33
  start-page: 295
  year: 2010
  end-page: 303
  article-title: Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate
  publication-title: Ecography
– volume: 78
  start-page: 388
  year: 2009
  end-page: 395
  article-title: Ecomorphological predictors of natal dispersal distances in birds
  publication-title: J. Anim. Ecol.
– volume: 33
  start-page: 271
  year: 2007
  end-page: 283
  article-title: Climate and the match or mismatch between predator requirements and resource availability
  publication-title: Climate Res.
– volume: 33
  start-page: 63
  year: 2006
  end-page: 70
  article-title: Lentic odonates have larger and more northern ranges than lotic species
  publication-title: J. Biogeogr.
– year: 1958
– volume: 16
  start-page: 199
  year: 2001
  end-page: 204
  article-title: Progress in invasion biology: predicting invaders
  publication-title: Trends Ecol. Evol.
– volume: 96
  start-page: 13
  year: 2008
  end-page: 17
  article-title: A new framework for predicting invasive plant species
  publication-title: J. Ecol.
– volume: 19
  start-page: 695
  year: 2010
  end-page: 723
  article-title: Assessing the vulnerability of European butterflies to climate change using multiple criteria
  publication-title: Biodivers. Conserv.
– volume: 331
  start-page: 324
  year: 2011
  end-page: 327
  article-title: Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations
  publication-title: Science
– volume: 164
  start-page: 378
  year: 2004
  end-page: 395
  article-title: Changes in dispersal during species’ range expansions
  publication-title: Am. Nat.
– volume: 105
  start-page: 11823
  year: 2008
  end-page: 11826
  article-title: Rapid shifts in plant distribution with recent climate change
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 167
  start-page: 853
  year: 2006
  end-page: 866
  article-title: Combining population‐dynamic and ecophysiological models to predict climate‐induced insect range shifts
  publication-title: Am. Nat.
– volume: 46
  start-page: 787
  year: 2009
  end-page: 795
  article-title: A global risk assessment for the success of bird introductions
  publication-title: J. Appl. Ecol.
– volume: 4
  start-page: 385
  year: 2002
  end-page: 405
  article-title: Which species become aliens?
  publication-title: Evol. Ecol. Res.
– volume: 106
  start-page: 19737
  year: 2009
  end-page: 19741
  article-title: Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction
  publication-title: Proc. Natl Acad. Sci. USA
– start-page: 295
  year: 2005
  end-page: 316
– volume: 12
  start-page: 2272
  year: 2006
  end-page: 2281
  article-title: The ability of climate envelope models to predict the effect of climate change on species distributions
  publication-title: Glob. Change Biol.
– volume: 446
  start-page: 507
  year: 2007
  end-page: 512
  article-title: The delayed rise of present‐day mammals
  publication-title: Nature
– volume: 320
  start-page: 1768
  year: 2008
  end-page: 1771
  article-title: A significant upward shift in plant species optimum elevation during the 20th century
  publication-title: Science
– volume: 35
  start-page: 695
  year: 2010
  end-page: 703
  article-title: The naturalization to invasion transition: are there introduction‐history correlates of invasiveness in exotic plants of Australia?
  publication-title: Austral Ecol.
– year: 2002
– volume: 276
  start-page: 3845
  year: 2009
  end-page: 3852
  article-title: Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines
  publication-title: Proc. R. Soc. Lond. B Biol.
– volume: 5
  start-page: 525
  year: 2002
  end-page: 530
  article-title: Possible effects of habitat fragmentation and climate change on the range of forest plant species
  publication-title: Ecol. Lett.
– start-page: 147
  year: 1965
  end-page: 172
– volume: 13
  start-page: s108
  year: 2003
  end-page: s116
  article-title: Dispersal potential of marine invertebrates in diverse habitats
  publication-title: Ecol. Appl.
– volume: 8
  start-page: 809
  year: 2006
  end-page: 821
  article-title: Ecological patterns and biological invasions: using regional species inventories in macroecology
  publication-title: Biol. Invasions
– volume: 427
  start-page: 145
  year: 2004
  end-page: 148
  article-title: Extinction risk from climate change
  publication-title: Nature
– volume: 213
  start-page: 912
  year: 2010
  end-page: 920
  article-title: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’
  publication-title: J. Exp. Biol.
– start-page: 19
  year: 1986
  end-page: 34
– year: 2009
– volume: 15
  start-page: 732
  year: 2009
  end-page: 743
  article-title: Species traits explain recent range shifts of Finnish butterflies
  publication-title: Glob. Change Biol.
– volume: 40
  start-page: 81
  year: 2009
  end-page: 102
  article-title: The role of propagule pressure in biological invasions
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 4
  start-page: 313
  year: 2001
  end-page: 321
  article-title: Impacts of landscape structure on butterfly range expansion
  publication-title: Ecol. Lett.
– start-page: 661
  year: 2001
  end-page: 732
– year: 2001
– volume: 76
  start-page: 2028
  year: 1995
  end-page: 2043
  article-title: Spatial variation in abundance
  publication-title: Ecology
– volume: 24
  start-page: 477
  year: 2008
  end-page: 514
  article-title: Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing
  publication-title: Cladistics
– volume: 160
  start-page: 712
  year: 2002
  end-page: 726
  article-title: Phylogenetic analysis and comparative data: a test and review of evidence
  publication-title: Am. Nat.
– volume: 22
  start-page: 5
  year: 1999
  end-page: 12
  article-title: Invasions
  publication-title: Ecography
– volume: 25
  start-page: 325
  year: 2010
  end-page: 331
  article-title: A framework for community interactions under climate change
  publication-title: Trends Ecol. Evol.
– start-page: 97
  year: 2007
  end-page: 125
– volume: 16
  start-page: 2923
  year: 2010
  end-page: 2929
  article-title: Adaptation to host plants may prevent rapid insect responses to climate change
  publication-title: Glob. Change Biol.
– volume: 416
  start-page: 626
  year: 2002
  end-page: 629
  article-title: Future projections for Mexican faunas under global climate change scenarios
  publication-title: Nature
– volume: 9
  start-page: 1
  year: 2006
  end-page: 44
  article-title: Voltinism of Odonata: a review
  publication-title: Int. J. Odonatol.
– volume: 5
  start-page: 181
  year: 2005
  end-page: 183
  article-title: Phylomatic: tree assembly for applied phylogenetics
  publication-title: Mol. Ecol. Notes
– year: 2004
– volume: 88
  start-page: 1803
  year: 2007
  end-page: 1812
  article-title: Poleward shifts in winter ranges of North American birds
  publication-title: Ecology
– volume: 19
  start-page: 496
  year: 2010
  end-page: 503
  article-title: The frog filter: amphibian introduction bias driven by taxonomy, body size and biogeography
  publication-title: Glob. Ecol. Biogeogr.
– volume: 87A
  start-page: 231
  year: 1987
  end-page: 249
  article-title: Relationships between morphological parameters in birds with different flying habitats
  publication-title: Comp. Biochem. Physiol.
– volume: 35
  start-page: 377
  year: 2010
  end-page: 385
  article-title: Body size and social dominance influence breeding dispersal in male (Odonata)
  publication-title: Ecol. Entomol.
– volume: 12
  start-page: 1079
  year: 2006
  end-page: 1093
  article-title: Do geographic distribution, niche property and life form explain plants’ vulnerability to global change?
  publication-title: Glob. Change Biol.
– volume: 28
  start-page: 495
  year: 1997
  end-page: 516
  article-title: Extinction vulnerability and selectivity: combining ecological and paleontological views
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 3
  start-page: e2502
  year: 2008
  article-title: Climate change and the future of California’s endemic flora
  publication-title: PLoS ONE
– volume: 414
  start-page: 65
  year: 2001
  end-page: 69
  article-title: Rapid responses of British butterflies to opposing forces of climate and habitat change
  publication-title: Nature
– volume: 12
  start-page: 450
  year: 2006
  end-page: 455
  article-title: The distributions of a wide range of taxonomic groups are expanding polewards
  publication-title: Glob. Change Biol.
– volume: 106
  start-page: 19729
  year: 2009
  end-page: 19736
  article-title: Niches, models, and climate change: assessing the assumptions and uncertainties
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 40
  start-page: 471
  year: 2006
  end-page: 483
  article-title: Higher‐level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves : Tyrannida)
  publication-title: Mol. Phylogenet. Evol.
– volume: 52
  start-page: 657
  year: 1998
  end-page: 668
  article-title: Baker’s law revisited: reproductive assurance in a metapopulation
  publication-title: Evolution
– year: 2003
– volume: 87
  start-page: 1896
  year: 2006
  end-page: 1906
  article-title: Predicting biodiversity change: outside the climate envelope, beyond the species‐area curve
  publication-title: Ecology
– volume: 462
  start-page: 1052
  year: 2009
  end-page: 1055
  article-title: The velocity of climate change
  publication-title: Nature
– volume: 322
  start-page: 261
  year: 2008
  end-page: 264
  article-title: Impact of a century of climate change on small‐mammal communities in Yosemite National Park, USA
  publication-title: Science
– start-page: 153
  year: 1996
  end-page: 172
– volume: 11
  start-page: 502
  year: 2005
  end-page: 506
  article-title: A northward shift of range margins in British Odonata
  publication-title: Glob. Change Biol.
– volume: 15
  start-page: 1859
  year: 2006
  end-page: 1871
  article-title: Extinction risk: a comparative analysis of central Asian vertebrates
  publication-title: Biodivers. Conserv.
– year: 1963
– year: 1988
– volume: 20
  start-page: 335
  year: 2001
  end-page: 350
  article-title: Molecular phylogeny of the chipmunks inferred from mitochondrial cytochrome b and cytochrome oxidase II gene sequences
  publication-title: Mol. Phylogenet. Evol.
– volume: 89
  start-page: 3472
  year: 2008
  end-page: 3479
  article-title: Climate change can cause spatial mismatch of trophically interacting species
  publication-title: Ecology
– volume: 308
  start-page: 1912
  year: 2005
  end-page: 1915
  article-title: Climate change and distribution shifts in marine fishes
  publication-title: Science
– volume: 90
  start-page: 588
  year: 2009
  end-page: 597
  article-title: Projected climate‐induced faunal change in the Western Hemisphere
  publication-title: Ecology
– volume: 106
  start-page: 19637
  year: 2009
  end-page: 19643
  article-title: Birds track their Grinnellian niche through a century of climate change
  publication-title: Proc. Natl Acad. Sci. USA
SSID ssj0012971
Score 2.5855086
Snippet Ecology Letters (2011) 14: 677–689 Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little...
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of...
Ecology Letters (2011) 14: 677-689 Abstract Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there...
SourceID proquest
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 677
SubjectTerms Adaptation, Physiological
Animal and plant ecology
Animal Migration
Animal reproduction
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Birds
Body Size
Climate Change
Climatology. Bioclimatology. Climate change
Clutch Size
Community ecology
Dispersal
Earth, ocean, space
Ecosystem
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
global climate change
Homing Behavior
life history
Meteorology
Odonata
Passeriformes
Passeriformes - physiology
Plant Development
Plants - anatomy & histology
Population Dynamics
range expansion
Reproduction
Seed Dispersal
Seeds - anatomy & histology
Seeds - physiology
Title Do species' traits predict recent shifts at expanding range edges?
URI https://api.istex.fr/ark:/67375/WNG-SK0Z669H-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2011.01620.x
https://www.ncbi.nlm.nih.gov/pubmed/21535340
https://www.proquest.com/docview/872198202
https://search.proquest.com/docview/883013660
https://search.proquest.com/docview/900628927
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7SQKGXJv2NkzboUHpz8MqWLJ9KyDpd2hAKSUjoRUiWRUtgd1nvwuaW18jr9UkyI21ctqSX0puwJBtrNKPvk2ZGAB9U4axA65iasrRpITyWrKtSJ6xyshFVG1IKjc7K0ys1rClNzpeHWJiYH6LfcCPNCPaaFNzY7k8lRyrMo4fW4ADBC88OCE8iaQjRHPm3_kCBV5F7xS751bpTz6MvQrhKI70kd0nT4Yj5eNXFY1h0HdqGtel463_-1TY8XyFUdhin1AvYaMcv4Wm8s_IGS3XIc33zCobDCaNATeTav27vGF02Me_YdEZHP3OGlhTXM9b9-OnxqZmzdjmNITRsRgENjDbyuk-v4eK4Pj8apatLGdIGoVKWOsdlaW2rLLdIFzPpBtwMGoVAIHNVYa1rlONtYb1ywjdkEnxjjHROWoPsJX8Dm-PJuN0B5r2QpfS5bJDVYRujpM9yxG_CKCNEnsDHIAA9jYk3tJldkx9aKfTl6Wd99jX7LmU10pcJ7K9JqO_AC7RXUskE9h5Eplc62mmF5LdCAMQTYH0tKhedmJhxO1lgE5VTTjuZ_b1JFaJQK14m8DbOhd9fx9UE9QA7yyDyvmKNeA00CVuTsHUQtl7q-qSm0u6_dtyDZ3Hvm9yK38HmfLZo38OTzi32g1rcAyLiCZY
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB7BIgQX_hfCwuID4pZV6sSOc0KIZilqqZB20a64WHYcC4TUVk0rdW-8Bq_HkzBjd4OKlgviZsWeRPF4xt-MZ8YAL1XhrEDtmJqytGkhPLasq1InrHKyEVUbSgqNTsrpuRrWVCZnfJkLE-tD9A43koygr0nAySH9p5SjLcxjiNbgCNELz44QUN4oJK5LyufIP_ZHCryK1lekyc93w3qufBMCVprrDQVMmg7nzMfLLq5Co7vgNuxOx3f_63_dgztbkMrexFV1H661swdwM15beYGtOpS6vngIw-GcUa4mmts_v_9gdN_EqmOLJZ3-rBgqU9zSWPflq8enZsXazSJm0bAl5TQw8uV1rx_Bp-P69O0o3d7LkDaIlrLUOS5La1tluUWLMZNuwM2gUYgFMlcV1rpGOd4W1isnfENawTfGSOekNWjA5PuwN5vP2ifAvBeylD6XDRp2OMYo6bMcIZwwygiRJ_AqcEAvYu0NbZbfKBStFPps-k6fjLPPUlYjfZbA4Q6LegJeoMqSSiZwcMkzvRXTTiu0fyvEQDwB1veifNGhiZm18zUOUTmVtZPZ34dUIRG14mUCj-Ni-P113FBQFJBYBp73HTu210ATszUxWwdm642uJzW1nv4r4Qu4NTr9MNGT99PxAdyOrnCKMn4Ge6vlun0O1zu3Pgwy8gv4zQ2-
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BEYhL-S2EQvEBcUuVdWLHOSHEZllotapUUCsulh3HAiHtrja70vbW1-D1eBJm7G3QonJB3KzYkygez_gbe34AXqnCWYHaMTVladNCeGxZV6VOWOVkI6o2pBQan5aTczWsKU3Ox6tYmJgfoj9wI8kI-poEfO78n0KOpjCPHlqDQwQvPDtEPHmrQFROefTz_KS_UeBVNL4iTX6-7dVz7ZsQr9JUr8lf0nQ4ZT7WurgOjG5j27A5je79z9-6D7sbiMrexjX1AG6004dwOxatvMBWHRJdXzyC4XDGKFITje2flz8YVZtYdmy-oLufJUNVihsa675-8_jULFm7nscYGragiAZGJ3ndm8fweVR_ejdON1UZ0gaxUpY6x2Vpbasst2gvZtINuBk0CpFA5qrCWtcox9vCeuWEb0gn-MYY6Zy0Bs2XfA92prNp-xSY90KW0ueyQbMOxxglfZYjgBNGGSHyBF4HBuh5zLyhzeI7OaKVQp9N3uvTo-yLlNVYnyVwsMWhnoAXqLCkkgnsX7FMb4S00wqt3woREE-A9b0oXXRlYqbtbIVDVE5J7WT29yFVCEOteJnAk7gWfn8dtxMUBCSWgeV9x5blNdDEbE3M1oHZeq3r45paz_6V8CXcORmO9PGHydE-3I3n4ORi_Bx2lotV-wJudm51ECTkF5L0DGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+species%E2%80%99+traits+predict+recent+shifts+at+expanding+range+edges%3F&rft.jtitle=Ecology+letters&rft.au=Angert%2C+Amy+L.&rft.au=Crozier%2C+Lisa+G.&rft.au=Rissler%2C+Leslie+J.&rft.au=Gilman%2C+Sarah+E.&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=7&rft.spage=677&rft.epage=689&rft_id=info:doi/10.1111%2Fj.1461-0248.2011.01620.x&rft.externalDBID=10.1111%252Fj.1461-0248.2011.01620.x&rft.externalDocID=ELE1620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon