Do species' traits predict recent shifts at expanding range edges?
Ecology Letters (2011) 14: 677–689 Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species’ abilities to shi...
Saved in:
Published in: | Ecology letters Vol. 14; no. 7; pp. 677 - 689 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-07-2011
Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Ecology Letters (2011) 14: 677–689
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species’ abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading‐edge range shifts and species’ traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg‐laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait‐based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. |
---|---|
AbstractList | Ecology Letters (2011) 14: 677–689
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species’ abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading‐edge range shifts and species’ traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg‐laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait‐based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.Original Abstract: Ecology Letters (2011) 14: 677-689 Ecology Letters (2011) 14: 677-689 Abstract Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. [PUBLICATION ABSTRACT] |
Author | Chunco, Amanda J. Angert, Amy L. Crozier, Lisa G. Tewksbury, Josh J. Rissler, Leslie J. Gilman, Sarah E. |
Author_xml | – sequence: 1 givenname: Amy L. surname: Angert fullname: Angert, Amy L. email: amy.angert@colostate.edu organization: Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA – sequence: 2 givenname: Lisa G. surname: Crozier fullname: Crozier, Lisa G. organization: Fish Ecology Division, Northwest Fisheries Science Center, Seattle, WA 98112, USA – sequence: 3 givenname: Leslie J. surname: Rissler fullname: Rissler, Leslie J. organization: Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA – sequence: 4 givenname: Sarah E. surname: Gilman fullname: Gilman, Sarah E. organization: Joint Science Department, The Claremont Colleges, Claremont, CA 91711, USA – sequence: 5 givenname: Josh J. surname: Tewksbury fullname: Tewksbury, Josh J. organization: Biology Department, University of Washington, Seattle, WA 98115, USA – sequence: 6 givenname: Amanda J. surname: Chunco fullname: Chunco, Amanda J. organization: Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24322686$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21535340$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URNuBv1BZSFVXCX4kjrNAFZRpixjBAlARG8uPm6mHTBLsjDr99zjMMEhs8MZXvt-5uj7nFB11fQcIYUpyms6rVU4LQTPCCpkzQmlOqGAk3z5BJ4fG0aHm347RaYwrQiirK_oMHTNa8pIX5AS9fdfjOID1EC_wGLQfIx4COG9HHMBCN-J475v0qkcM20F3zndLHHS3BAxuCfHyOXra6DbCi_09Q1-v51-ubrPFp5v3V28WmS3TcplzTFTGgDTMMEqIcJRpamVBS-LqwhhnpWNQmEa6srEFK6vGai2cE0aXdcVn6GI3dwj9zw3EUa19tNC2uoN-E1WdZjJZs_-TUnJCuRAkkS__IVf9JnTpG0pWjNaSJftm6GwPbcwanBqCX-vwqP64mIDzPaCj1W2T3LE-_uUKzpiQInGvd9yDb-Hx0KdETamqlZoCU1N4akpV_U5VbdV8MZ-qpM92eh9H2B70OvxQouJVqe4-3qjPH8h3Iepbdcd_AQteo-Y |
CitedBy_id | crossref_primary_10_1111_gcb_12469 crossref_primary_10_1186_s13750_023_00296_0 crossref_primary_10_1111_ddi_13816 crossref_primary_10_1038_s41558_020_0770_8 crossref_primary_10_1111_jbi_12257 crossref_primary_10_1002_ecs2_4194 crossref_primary_10_1016_j_gecco_2015_07_012 crossref_primary_10_7717_peerj_1201 crossref_primary_10_1111_cobi_12166 crossref_primary_10_1111_ecog_03823 crossref_primary_10_1111_mec_12518 crossref_primary_10_1371_journal_pone_0192401 crossref_primary_10_1111_1365_2435_13095 crossref_primary_10_1111_gcb_13429 crossref_primary_10_1590_1676_0611_bn_2021_1204 crossref_primary_10_1111_1365_2656_12227 crossref_primary_10_1186_s40462_017_0104_2 crossref_primary_10_3390_biology12020316 crossref_primary_10_1016_j_limno_2015_10_005 crossref_primary_10_1111_gcb_12570 crossref_primary_10_1111_fwb_12874 crossref_primary_10_3389_fmars_2016_00062 crossref_primary_10_1038_s41437_023_00610_z crossref_primary_10_1111_cobi_14310 crossref_primary_10_3390_f11090989 crossref_primary_10_1016_j_anbehav_2018_08_007 crossref_primary_10_1590_S0073_47212013000300010 crossref_primary_10_1111_ecog_03975 crossref_primary_10_1098_rspb_2012_1890 crossref_primary_10_1016_j_tree_2024_05_012 crossref_primary_10_1890_12_1407_1 crossref_primary_10_1111_jbi_12236 crossref_primary_10_1016_j_gecco_2019_e00874 crossref_primary_10_1038_s41598_019_51582_2 crossref_primary_10_1111_brv_12344 crossref_primary_10_3989_ajbm_597 crossref_primary_10_1111_ddi_12753 crossref_primary_10_1002_ece3_407 crossref_primary_10_3390_insects15050340 crossref_primary_10_3389_fevo_2023_1174495 crossref_primary_10_1007_s11258_020_01085_2 crossref_primary_10_1111_jbi_13795 crossref_primary_10_1111_cobi_14208 crossref_primary_10_7717_peerj_1410 crossref_primary_10_1038_s41477_020_0592_8 crossref_primary_10_1098_rsbl_2015_0001 crossref_primary_10_1111_ele_14367 crossref_primary_10_1111_gcb_13635 crossref_primary_10_1111_ddi_12769 crossref_primary_10_1111_ele_13396 crossref_primary_10_1111_gcb_12429 crossref_primary_10_1111_cobi_13281 crossref_primary_10_1111_1365_2656_13862 crossref_primary_10_1111_1365_2656_12655 crossref_primary_10_1098_rsif_2021_0488 crossref_primary_10_1038_s41467_020_16684_w crossref_primary_10_1088_2515_7620_abf468 crossref_primary_10_1111_j_1600_0587_2012_07683_x crossref_primary_10_3732_ajb_1300043 crossref_primary_10_1098_rstb_2017_0405 crossref_primary_10_1002_ece3_223 crossref_primary_10_1007_s12526_015_0375_z crossref_primary_10_1371_journal_pone_0028535 crossref_primary_10_1111_gcb_13622 crossref_primary_10_1002_ece3_1052 crossref_primary_10_1002_ece3_2385 crossref_primary_10_1126_science_1239352 crossref_primary_10_1002_ece3_3477 crossref_primary_10_1111_geb_12818 crossref_primary_10_1186_s40462_021_00294_2 crossref_primary_10_1007_s11258_016_0603_z crossref_primary_10_1002_ecy_3095 crossref_primary_10_1007_s10531_019_01769_w crossref_primary_10_1111_brv_12777 crossref_primary_10_1016_j_biocon_2023_109929 crossref_primary_10_1111_eva_12004 crossref_primary_10_1371_journal_pclm_0000320 crossref_primary_10_1002_ece3_699 crossref_primary_10_1016_j_ecss_2020_106692 crossref_primary_10_1111_ele_12286 crossref_primary_10_1002_ecs2_3043 crossref_primary_10_1093_aob_mcv158 crossref_primary_10_1371_journal_pone_0130488 crossref_primary_10_1111_ibi_12732 crossref_primary_10_1098_rstb_2011_0422 crossref_primary_10_1007_s10841_014_9709_6 crossref_primary_10_1111_j_1365_2656_2012_01958_x crossref_primary_10_1111_ddi_12793 crossref_primary_10_1016_j_ppees_2014_05_005 crossref_primary_10_1126_science_1237190 crossref_primary_10_1890_14_1661_1 crossref_primary_10_1371_journal_pone_0098361 crossref_primary_10_1556_ComEc_15_2014_2_2 crossref_primary_10_1111_1365_2656_12881 crossref_primary_10_1104_pp_112_206219 crossref_primary_10_1002_ecy_4287 crossref_primary_10_1002_ecs2_2061 crossref_primary_10_1038_s41467_018_04889_z crossref_primary_10_1111_ele_13236 crossref_primary_10_1080_03949370_2022_2069159 crossref_primary_10_1080_15659801_2014_888825 crossref_primary_10_1111_ecog_00967 crossref_primary_10_1111_geb_12865 crossref_primary_10_1111_ddi_12564 crossref_primary_10_1080_24750263_2024_2304269 crossref_primary_10_1111_ele_12140 crossref_primary_10_1038_s41558_020_0872_3 crossref_primary_10_1007_s11284_017_1521_9 crossref_primary_10_1186_s40665_014_0001_5 crossref_primary_10_1016_j_ecolind_2014_07_038 crossref_primary_10_1016_j_gecco_2022_e02216 crossref_primary_10_1098_rstb_2012_0238 crossref_primary_10_1111_icad_12241 crossref_primary_10_1002_gch2_201800095 crossref_primary_10_1111_brv_12602 crossref_primary_10_1098_rstb_2012_0239 crossref_primary_10_1111_bij_12574 crossref_primary_10_1098_rspb_2014_2922 crossref_primary_10_1111_j_1365_2486_2012_02730_x crossref_primary_10_1098_rspb_2014_0744 crossref_primary_10_1007_s11104_023_05896_w crossref_primary_10_1007_s13593_014_0245_2 crossref_primary_10_1111_1365_2656_12181 crossref_primary_10_1371_journal_pclm_0000174 crossref_primary_10_1007_s00442_021_05094_4 crossref_primary_10_1111_ddi_12576 crossref_primary_10_1111_gcb_13148 crossref_primary_10_1016_j_avrs_2022_100039 crossref_primary_10_1038_s41559_023_02055_3 crossref_primary_10_1002_eap_2905 crossref_primary_10_1111_j_1600_0587_2012_07534_x crossref_primary_10_1111_ele_13244 crossref_primary_10_1016_j_foreco_2018_10_040 crossref_primary_10_3390_fishes7040143 crossref_primary_10_1007_s12224_020_09362_8 crossref_primary_10_1139_er_2015_0072 crossref_primary_10_1016_j_gloenvcha_2014_03_009 crossref_primary_10_1111_gcb_12056 crossref_primary_10_1007_s10531_016_1053_6 crossref_primary_10_1111_cobi_12532 crossref_primary_10_1111_ddi_12346 crossref_primary_10_1111_ddi_12107 crossref_primary_10_1038_s41598_019_40784_3 crossref_primary_10_1111_geb_13819 crossref_primary_10_1111_jeb_12273 crossref_primary_10_1186_s40462_019_0159_3 crossref_primary_10_1007_s00442_013_2731_7 crossref_primary_10_1098_rspb_2014_1857 crossref_primary_10_1111_ecog_05070 crossref_primary_10_1371_journal_pone_0248712 crossref_primary_10_1038_s41467_019_12655_y crossref_primary_10_1016_j_agee_2021_107565 crossref_primary_10_1038_nclimate3223 crossref_primary_10_1111_acv_12287 crossref_primary_10_1111_mec_13548 crossref_primary_10_1371_journal_pbio_3002361 crossref_primary_10_1890_ES14_00533_1 crossref_primary_10_1098_rspb_2019_0384 crossref_primary_10_1007_s10201_020_00624_0 crossref_primary_10_1186_s12898_017_0128_x crossref_primary_10_3390_ani13081407 crossref_primary_10_1111_gcb_15221 crossref_primary_10_1111_icad_12450 crossref_primary_10_1002_ecy_4242 crossref_primary_10_1016_j_cbpa_2019_110532 crossref_primary_10_1038_s41598_020_71685_5 crossref_primary_10_1111_1365_2664_12256 crossref_primary_10_1111_gcb_14372 crossref_primary_10_1111_gcb_12026 crossref_primary_10_1111_een_12445 crossref_primary_10_1111_geb_12306 crossref_primary_10_1111_geb_12423 crossref_primary_10_1098_rspb_2013_3017 crossref_primary_10_1111_1365_2656_12373 crossref_primary_10_1007_s00300_024_03250_z crossref_primary_10_1111_ddi_12007 crossref_primary_10_1111_mec_12207 crossref_primary_10_1007_s10695_015_0050_0 crossref_primary_10_1016_j_biocon_2013_10_005 crossref_primary_10_1002_ecy_3121 crossref_primary_10_1111_j_1365_2435_2012_01990_x crossref_primary_10_1086_676590 crossref_primary_10_1111_geb_12662 crossref_primary_10_1111_geb_13752 crossref_primary_10_1007_s10531_017_1399_4 crossref_primary_10_1016_j_gecco_2020_e00915 crossref_primary_10_1111_oik_09098 crossref_primary_10_3390_d14090719 crossref_primary_10_1093_aob_mcad085 crossref_primary_10_1002_lno_11395 crossref_primary_10_7717_peerj_77 crossref_primary_10_1126_science_aaa4984 crossref_primary_10_1111_gcb_12499 crossref_primary_10_1111_geb_12774 crossref_primary_10_1002_ece3_622 crossref_primary_10_1007_s10641_016_0534_5 crossref_primary_10_1111_mec_13528 crossref_primary_10_1007_s00442_015_3525_x crossref_primary_10_1038_s41467_023_39573_4 crossref_primary_10_1111_ele_12474 crossref_primary_10_1007_s10530_016_1065_x crossref_primary_10_1111_j_1365_2486_2011_02571_x crossref_primary_10_1890_14_2419_1 crossref_primary_10_1111_ddi_12130 crossref_primary_10_1111_ddi_13581 crossref_primary_10_1111_bij_12517 crossref_primary_10_1002_ecs2_2108 crossref_primary_10_1111_ele_13774 crossref_primary_10_1371_journal_pone_0166802 crossref_primary_10_1111_ddi_12263 crossref_primary_10_1111_geb_12521 crossref_primary_10_1111_geb_13610 crossref_primary_10_1002_ece3_3880 crossref_primary_10_1111_ecog_01871 crossref_primary_10_1111_nph_18172 crossref_primary_10_1002_ecy_3345 crossref_primary_10_1111_j_1600_0706_2013_00207_x crossref_primary_10_1007_s10531_013_0590_5 crossref_primary_10_1086_704780 crossref_primary_10_3390_biology11071027 crossref_primary_10_3389_fcosc_2022_918873 crossref_primary_10_3390_d11030042 crossref_primary_10_1111_gcb_14581 crossref_primary_10_1111_j_1469_8137_2012_04230_x crossref_primary_10_1111_gcb_16517 crossref_primary_10_1111_ddi_13126 crossref_primary_10_1007_s10980_015_0173_9 crossref_primary_10_1111_gcb_14458 crossref_primary_10_1371_journal_pone_0048863 crossref_primary_10_1007_s10750_017_3431_9 crossref_primary_10_3390_fire4010001 crossref_primary_10_1126_science_aaz9463 crossref_primary_10_1038_s41598_020_72427_3 crossref_primary_10_1111_icad_12491 crossref_primary_10_1111_1365_2435_13400 crossref_primary_10_1126_science_335_6068_538_a crossref_primary_10_1111_geb_12105 crossref_primary_10_3897_BDJ_2_e1041 crossref_primary_10_1038_nclimate2086 crossref_primary_10_1111_1365_2745_12818 crossref_primary_10_1016_j_biocon_2018_01_002 crossref_primary_10_1111_mec_15111 crossref_primary_10_1016_j_ecolmodel_2018_10_023 crossref_primary_10_1098_rspb_2021_0823 crossref_primary_10_1111_ecog_05334 crossref_primary_10_1111_icad_12767 crossref_primary_10_1111_icad_12647 crossref_primary_10_1111_oik_05535 crossref_primary_10_3389_fevo_2018_00186 crossref_primary_10_3390_insects13010043 crossref_primary_10_1111_gcb_15054 crossref_primary_10_1111_gcb_16143 crossref_primary_10_1111_ele_13762 crossref_primary_10_1093_icb_ics067 crossref_primary_10_1016_j_scitotenv_2021_146896 crossref_primary_10_3897_natureconservation_34_30728 crossref_primary_10_1016_j_scitotenv_2021_149926 crossref_primary_10_1111_j_1600_0587_2013_00116_x crossref_primary_10_3354_meps14349 crossref_primary_10_1111_gcb_15281 crossref_primary_10_1002_ecs2_4860 crossref_primary_10_1111_j_1365_2486_2012_02784_x crossref_primary_10_1111_ddi_12050 crossref_primary_10_1111_gcb_15285 crossref_primary_10_1146_annurev_ecolsys_012021_092849 crossref_primary_10_1093_jhered_esx051 crossref_primary_10_1016_j_quascirev_2019_105886 crossref_primary_10_1007_s10531_016_1289_1 crossref_primary_10_1186_s12862_019_1548_3 crossref_primary_10_1002_wcc_551 crossref_primary_10_1111_fwb_13291 crossref_primary_10_1002_ecy_3300 crossref_primary_10_1038_s42003_023_04967_z crossref_primary_10_1038_s41559_022_01979_6 crossref_primary_10_1098_rspb_2011_2367 crossref_primary_10_1111_1749_4877_12167 crossref_primary_10_1007_s10584_019_02549_9 crossref_primary_10_1016_j_baae_2022_06_005 crossref_primary_10_1038_s41598_023_38195_6 crossref_primary_10_1111_geb_12555 crossref_primary_10_1016_j_biocon_2023_110098 crossref_primary_10_1111_aec_12902 crossref_primary_10_1007_s10584_013_0820_6 crossref_primary_10_1111_ddi_12196 crossref_primary_10_3390_insects14080702 crossref_primary_10_1111_mec_13497 crossref_primary_10_1111_gcb_14169 crossref_primary_10_1002_ece3_7142 crossref_primary_10_1016_j_avrs_2022_100007 crossref_primary_10_1007_s10584_018_2294_z crossref_primary_10_1016_j_tree_2015_12_014 crossref_primary_10_1038_nature12540 crossref_primary_10_1038_s43017_024_00527_z crossref_primary_10_1371_journal_pone_0097718 crossref_primary_10_1890_11_2296_1 crossref_primary_10_1002_ecs2_1565 crossref_primary_10_1111_gcb_16220 crossref_primary_10_1007_s42974_022_00104_8 crossref_primary_10_1038_s41467_020_18740_x crossref_primary_10_1890_ES11_00283_1 crossref_primary_10_1111_gcb_15008 crossref_primary_10_1016_j_palaeo_2021_110568 crossref_primary_10_1111_icad_12309 crossref_primary_10_1016_j_biocon_2011_10_019 crossref_primary_10_1007_s10531_022_02469_8 crossref_primary_10_3897_zookeys_482_8453 crossref_primary_10_1111_geb_12377 crossref_primary_10_1111_cobi_12522 crossref_primary_10_1016_j_actao_2016_01_005 crossref_primary_10_1016_j_biocon_2012_12_032 crossref_primary_10_1098_rstb_2018_0186 crossref_primary_10_3390_f11070738 crossref_primary_10_1111_ecog_00825 crossref_primary_10_1073_pnas_1706080114 crossref_primary_10_1098_rspb_2012_1051 crossref_primary_10_1371_journal_pone_0098907 crossref_primary_10_1016_j_dsr2_2014_04_007 crossref_primary_10_1111_gcb_15030 crossref_primary_10_3897_natureconservation_19_12681 crossref_primary_10_1073_pnas_1713936115 crossref_primary_10_1073_pnas_1804224115 crossref_primary_10_1073_pnas_1318190111 crossref_primary_10_1111_jse_12649 crossref_primary_10_1111_ecog_00931 crossref_primary_10_3390_d15020157 crossref_primary_10_1111_icad_12535 crossref_primary_10_1111_ibi_13136 crossref_primary_10_1111_eva_12347 crossref_primary_10_3390_ani11082457 crossref_primary_10_1080_00379271_2022_2099972 crossref_primary_10_3390_d14040302 crossref_primary_10_1016_j_avrs_2024_100162 crossref_primary_10_1111_ele_12945 crossref_primary_10_1111_geb_12189 crossref_primary_10_1016_j_foreco_2017_07_048 crossref_primary_10_1007_s10682_021_10111_2 crossref_primary_10_1111_nph_15554 crossref_primary_10_1038_s41597_023_02157_4 crossref_primary_10_1093_biolinnean_blaa147 crossref_primary_10_1111_ecog_01128 crossref_primary_10_1086_682210 crossref_primary_10_1111_btp_13133 crossref_primary_10_1111_ecog_04996 crossref_primary_10_1111_geb_12170 crossref_primary_10_1016_j_biocon_2016_07_030 crossref_primary_10_1002_ecy_2884 crossref_primary_10_1016_j_ecolind_2018_03_047 crossref_primary_10_1126_science_1247579 crossref_primary_10_1111_geb_12174 crossref_primary_10_1038_s41598_024_61595_1 crossref_primary_10_1111_cobi_14035 crossref_primary_10_1111_gcb_13736 crossref_primary_10_1007_s10531_023_02589_9 crossref_primary_10_1038_ncomms6053 crossref_primary_10_1038_s41559_020_1198_2 crossref_primary_10_1126_science_aad8466 crossref_primary_10_1126_science_1206432 crossref_primary_10_3120_0024_9637_62_2_115 crossref_primary_10_1098_rspb_2021_2755 crossref_primary_10_1111_jzs_12014 crossref_primary_10_1111_gcb_13847 crossref_primary_10_1002_ece3_11440 crossref_primary_10_1371_journal_pone_0122267 crossref_primary_10_1111_1365_2745_12782 crossref_primary_10_1111_jbi_14001 crossref_primary_10_1890_12_0251_1 crossref_primary_10_1111_geb_13246 crossref_primary_10_1111_1462_2920_13823 crossref_primary_10_1111_nyas_12184 crossref_primary_10_1111_ecog_04327 crossref_primary_10_1007_s00035_020_00243_6 crossref_primary_10_1111_ecog_05414 crossref_primary_10_1656_045_026_0304 crossref_primary_10_1111_1365_2745_12572 crossref_primary_10_1371_journal_pone_0065842 crossref_primary_10_1098_rstb_2021_0013 crossref_primary_10_1016_j_ecolmodel_2023_110481 crossref_primary_10_1007_s12080_016_0314_z crossref_primary_10_1650_CONDOR_17_206_1 crossref_primary_10_1093_insilicoplants_diab029 crossref_primary_10_1093_jmammal_gyab077 crossref_primary_10_1111_aec_12163 crossref_primary_10_1139_cjz_2018_0010 crossref_primary_10_1002_wcc_271 crossref_primary_10_1038_nclimate2945 crossref_primary_10_1146_annurev_marine_010419_010916 crossref_primary_10_3955_046_093_0102 crossref_primary_10_1007_s11160_017_9479_9 crossref_primary_10_1016_j_biocon_2015_03_034 crossref_primary_10_1093_ornithology_ukad027 crossref_primary_10_1111_jeb_12669 crossref_primary_10_1017_S0025315417001382 crossref_primary_10_3389_fevo_2021_621749 crossref_primary_10_1111_1365_2745_13323 crossref_primary_10_1111_jbi_14336 crossref_primary_10_1016_j_ecolind_2016_06_013 crossref_primary_10_1111_j_1365_2699_2011_02647_x crossref_primary_10_1016_j_tree_2018_07_005 crossref_primary_10_1111_j_1600_0587_2013_00282_x crossref_primary_10_1038_s41467_019_12343_x crossref_primary_10_1371_journal_pone_0088958 crossref_primary_10_1111_jbi_14325 crossref_primary_10_1007_s10841_018_0100_x crossref_primary_10_1073_pnas_2307525121 crossref_primary_10_1016_j_jembe_2019_03_004 crossref_primary_10_1016_j_biocon_2013_09_020 crossref_primary_10_1038_s41437_023_00613_w crossref_primary_10_1111_geb_12078 crossref_primary_10_1111_geb_12075 crossref_primary_10_1146_annurev_ecolsys_110411_160516 crossref_primary_10_3389_fenvs_2021_660163 |
ContentType | Journal Article |
Copyright | 2011 Blackwell Publishing Ltd/CNRS 2015 INIST-CNRS 2011 Blackwell Publishing Ltd/CNRS. |
Copyright_xml | – notice: 2011 Blackwell Publishing Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2011 Blackwell Publishing Ltd/CNRS. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7ST 7U6 F1W H95 L.G SOI 7X8 |
DOI | 10.1111/j.1461-0248.2011.01620.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environment Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Entomology Abstracts MEDLINE - Academic Entomology Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 689 |
ExternalDocumentID | 2377045381 21535340 24322686 ELE1620 ark_67375_WNG_SK0Z669H_W |
Genre | article Journal Article Feature |
GeographicLocations | North America |
GeographicLocations_xml | – name: North America |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAPBV ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 AAMNL C1K H94 M7N 7ST 7U6 F1W H95 L.G SOI 7X8 |
ID | FETCH-LOGICAL-c5620-dd267bbe8b2b21006d12a1c84150d94bbdc8d2e4bf8d5fc4257fcaa6dd6ba5973 |
IEDL.DBID | 33P |
ISSN | 1461-023X |
IngestDate | Sat Aug 17 01:44:01 EDT 2024 Fri Aug 16 04:47:18 EDT 2024 Tue Nov 19 07:04:48 EST 2024 Sat Sep 28 08:00:33 EDT 2024 Sun Oct 22 16:03:13 EDT 2023 Sat Aug 24 00:57:19 EDT 2024 Wed Oct 30 09:55:08 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Dynamical climatology Climate change Modification Life history range expansion Dispersal Global change Planetary scale global climate change Expansion Dispersion |
Language | English |
License | CC BY 4.0 2011 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5620-dd267bbe8b2b21006d12a1c84150d94bbdc8d2e4bf8d5fc4257fcaa6dd6ba5973 |
Notes | ark:/67375/WNG-SK0Z669H-W istex:06E0511F29C739B6FAFD8BB3CE6F9D28C35522CB ArticleID:ELE1620 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1461-0248.2011.01620.x |
PMID | 21535340 |
PQID | 872198202 |
PQPubID | 32390 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_900628927 proquest_miscellaneous_883013660 proquest_journals_872198202 pubmed_primary_21535340 pascalfrancis_primary_24322686 wiley_primary_10_1111_j_1461_0248_2011_01620_x_ELE1620 istex_primary_ark_67375_WNG_SK0Z669H_W |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | McKinney, M.L. (1997). Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst., 28, 495-516. Prinzing, A., Durka, W., Klotz, S. & Brandl, R. (2002). Which species become aliens? Evol. Ecol. Res., 4, 385-405. Walker, K.J. & Preston, C.D. (2006). Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers. Conserv., 15, 1913-1942. Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett., 12, 334-350. Broenniman, O., Thuiller, W., Hughes, G., Midgley, G.F., Alkemade, J.M.R. & Guisan, A. (2006). Do geographic distribution, niche property and life form explain plants' vulnerability to global change? Glob. Change Biol., 12, 1079-1093. Durant, J.M., Hjermann, D.O., Ottersen, G. & Stenseth, N.C. (2007). Climate and the match or mismatch between predator requirements and resource availability. Climate Res., 33, 271-283. Williams, S.E., Williams, Y.M., VanDerWal, J., Isaac, J.L., Shoo, L.P. & Johnson, C.N. (2009). Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proc. Natl Acad. Sci. USA, 106, 19737-19741. Gilman, S.E., Wethey, D.S. & Helmuth, B. (2006). Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc. Natl Acad. Sci. USA, 103, 9560-9565. Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat., 160, 712-726. Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290. Corbet, P.S., Suhling, F. & Soendgerath, D. (2006). Voltinism of Odonata: a review. Int. J. Odonatol., 9, 1-44. Crozier, L. & Dwyer, G. (2006). Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat., 167, 853-866. Herron, M.D., Castoe, T.A. & Parkinson, C.L. (2004). Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Mol. Phylogenet. Evol., 31, 1015-1030. Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. et al. (2009). Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588-597. Viscor, G. & Fuster, J.F. (1987). Relationships between morphological parameters in birds with different flying habitats. Comp. Biochem. Physiol., 87A, 231-249. Erlich, P.R., Dobkin, D.S. & Wheye, D. (1988). The Birder's Handbook: A Field Guide to the Natural History of North American Birds. Simon & Shuster, New York. Hijmans, R.J. & Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol., 12, 2272-2281. Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. & Mynsberge, A.R. (2011). Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science, 331, 324-327. R Core DevelopmentTeam (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Bybee, S.M., Ogden, T.H., Branham, M.A. & Whiting, M.F. (2008). Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics, 24, 477-514. Holzinger, B., Hülber, K., Camenisch, M. & Grabherr, G. (2008). Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol., 195, 179-196. Hickling, R., Roy, D.B., Hill, J.K., Fox, R. & Thomas, C.D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol., 12, 450-455. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 367-669. Cadotte, M.W., Murray, B.R. & Lovett-Doust, J. (2006). Ecological patterns and biological invasions: using regional species inventories in macroecology. Biol. Invasions, 8, 809-821. Ericson, P.G.P., Zuccon, D., Ohlson, J.I., Johansson, U.S., Alvarenga, H. & Prum, R.O. (2006). Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves : Tyrannida). Mol. Phylogenet. Evol., 40, 471-483. Heikkinen, R.K., Luoto, M., Leikola, N., Pöyry, J., Settele, J., Kudrna, O. et al. (2010). Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv., 19, 695-723. Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA, 106, 19729-19736. Lenoir, J., Gegout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N.E. et al. (2010). Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33, 295-303. Vall-llosera, M. & Sol, D. (2009). A global risk assessment for the success of bird introductions. J. Appl. Ecol., 46, 787-795. Kolar, C.S. & Lodge, D.M. (2001). Progress in invasion biology: predicting invaders. Trends Ecol. Evol., 16, 199-204. Perry, A.L., Low, P.J., Ellis, J.R. & Reynolds, J.D. (2005). Climate change and distribution shifts in marine fishes. Science, 308, 1912-1915. Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R.H. et al. (2002). Future projections for Mexican faunas under global climate change scenarios. Nature, 416, 626-629. Odum, H.T. & Allee, W.C. (1954). A note on the stable point of populations showing both intraspecific cooperation and disoperation. Ecology, 35, 95-97. Collen, B., Bykova, E., Ling, S., Milner-Gulland, E.J. & Purvis, A. (2006). Extinction risk: a comparative analysis of central Asian vertebrates. Biodivers. Conserv., 15, 1859-1871. Corbet, P.S. (1963). A Biology of Dragonflies. Quadrangle Books, Chicago. Gardner, J.L., Heinsohn, R. & Joseph, L. (2009). Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. Lond. B Biol., 276, 3845-3852. Tingley, R., Romagosa, C.M., Kraus, F., Bickford, D., Phillips, B.L. & Shine, R. (2010). The frog filter: amphibian introduction bias driven by taxonomy, body size and biogeography. Glob. Ecol. Biogeogr., 19, 496-503. Brown, J.H., Mehlman, D.W. & Stevens, G.C. (1995). Spatial variation in abundance. Ecology, 76, 2028-2043. Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B. & Hermy, M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett., 5, 525-530. Pelini, S.L., Keppel, J.A., Kelley, A.E. & Hellmann, J.J. (2010). Adaptation to host plants may prevent rapid insect responses to climate change. Glob. Change Biol., 16, 2923-2929. Hill, J.K., Thomas, C.D. & Huntley, B. (1999). Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proc. R. Soc. Lond. B Biol., 266, 1197-1206. Visser, M.E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. Lond. B Biol., 275, 649-659. Williamson, M. (1999). Invasions. Ecography, 22, 5-12. Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. & Ackerly, D.D. (2009). The velocity of climate change. Nature, 462, 1052-1055. Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J. et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763-1768. Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst., 40, 81-102. Mack, R.N. (1996). Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol. Conserv., 78, 107-121. Higgins, S.I., Nathan, R. & Cain, M.L. (2003). Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology, 84, 1945-1956. Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C. & Beissinger, S.R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322, 261-264. Webb, C.O. & Donoghue, M.J. (2005). Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes, 5, 181-183. van Kleunen, M., Weber, E. & Fischer, M. (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett., 13, 235-245. Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C. et al. (2004). Extinction risk from climate change. Nature, 427, 145-148. Somero, G.N. (2010). The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. J. Exp. Biol., 213, 912-920. Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P., Thompson, K., Sonnenschein, M. et al. (2008). The LEDA Traitbase: a database of life-history traits of Northwest European flora. J. Ecol., 96, 1266-1274. Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A. & Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol., 6, 2621-2626. Askew, R.R. (1988). The Dragonflies of Europe. Harley Books, Colchester. Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer-Verlag, New York. Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P. & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771. Nussey, D.H., Postma, E., Gienapp, P. & Visser, M.E. (2005). Selection on heritable phenotypic plasticity in a wild bird population. Science, 310, 304-306. Piaggio, A.J. & Spicer, G.S. (2001). Molecular phylogeny of the chipmunks inferred from mitochondrial cyt 2004; 20 2004; 164 2009; 46 2010; 16 2009; 40 2010; 13 2010; 19 2006; 33 1995; 76 2006; 37 2003; 13 2009; 276 1999; 87 2008; 105 2008; 6 2008; 3 2007; 33 1996; 78 1998; 152 2009; 12 2004; 31 2010; 25 2001 2009; 90 1987 1986 2008; 24 2005; 308 1987; 87A 2001; 16 1998; 52 2003; 84 2008; 275 2006; 167 2008; 195 2009; 15 2001; 414 1988 2010; 33 2007; 446 2010; 35 2006; 12 2011; 80 2005; 310 2002; 5 2006; 9 2006; 15 2009 2006; 8 1997; 28 2007 1996 1999; 22 2002; 4 2005 2004 2003 2008; 96 2002; 416 2002 1999; 266 2008; 322 2008; 320 2004; 427 1958 2011; 331 2001; 20 2009; 78 2002; 160 2006; 40 2006; 87 2001; 4 1954; 35 2010; 213 1965 2009; 462 2005; 5 1963 2008; 89 2007; 88 2005; 11 2006; 103 2009; 106 |
References_xml | – volume: 96 start-page: 1266 year: 2008 end-page: 1274 article-title: The LEDA Traitbase: a database of life‐history traits of Northwest European flora publication-title: J. Ecol. – volume: 78 start-page: 107 year: 1996 end-page: 121 article-title: Predicting the identity and fate of plant invaders: emergent and emerging approaches publication-title: Biol. Conserv. – volume: 87 start-page: 185 year: 1999 end-page: 190 article-title: What is the Allee effect? publication-title: Oikos – volume: 15 start-page: 1913 year: 2006 end-page: 1942 article-title: Ecological predictors of extinction risk in the flora of lowland England, UK publication-title: Biodivers. Conserv. – volume: 310 start-page: 304 year: 2005 end-page: 306 article-title: Selection on heritable phenotypic plasticity in a wild bird population publication-title: Science – volume: 152 start-page: 204 year: 1998 end-page: 224 article-title: Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord publication-title: Am. Nat. – volume: 195 start-page: 179 year: 2008 end-page: 196 article-title: Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates publication-title: Plant Ecol. – volume: 20 start-page: 289 year: 2004 end-page: 290 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics – year: 2005 – volume: 89 start-page: 1279 year: 2008 end-page: 1295 article-title: The relationships of major lineages within peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal publication-title: J. Mammal. – volume: 103 start-page: 9560 year: 2006 end-page: 9565 article-title: Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales publication-title: Proc. Natl Acad. Sci. USA – volume: 320 start-page: 1763 year: 2008 end-page: 1768 article-title: A phylogenomic study of birds reveals their evolutionary history publication-title: Science – volume: 275 start-page: 649 year: 2008 end-page: 659 article-title: Keeping up with a warming world; assessing the rate of adaptation to climate change publication-title: Proc. R. Soc. Lond. B Biol. – volume: 13 start-page: 1041 year: 2010 end-page: 1054 article-title: Can mechanism inform species’ distribution models? publication-title: Ecol. Lett. – start-page: 429 year: 1987 end-page: 453 – volume: 6 start-page: 2621 year: 2008 end-page: 2626 article-title: Towards an integrated framework for assessing the vulnerability of species to climate change publication-title: PLoS Biol. – volume: 31 start-page: 1015 year: 2004 end-page: 1030 article-title: Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus) publication-title: Mol. Phylogenet. Evol. – year: 1986 – volume: 80 start-page: 235 year: 2011 end-page: 243 article-title: Climate effects on population fluctuations of the white‐throated dipper publication-title: J. Anim. Ecol. – volume: 37 start-page: 367 year: 2006 end-page: 669 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 5 start-page: 163 year: 2002 end-page: 167 article-title: Body size and invasion success in marine bivalves publication-title: Ecol. Lett. – volume: 35 start-page: 95 year: 1954 end-page: 97 article-title: A note on the stable point of populations showing both intraspecific cooperation and disoperation publication-title: Ecology – volume: 12 start-page: 334 year: 2009 end-page: 350 article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges publication-title: Ecol. Lett. – volume: 84 start-page: 1945 year: 2003 end-page: 1956 article-title: Are long‐distance dispersal events in plants usually caused by nonstandard means of dispersal? publication-title: Ecology – volume: 266 start-page: 1197 year: 1999 end-page: 1206 article-title: Climate and habitat availability determine 20th century changes in a butterfly’s range margin publication-title: Proc. R. Soc. Lond. B Biol. – volume: 13 start-page: 235 year: 2010 end-page: 245 article-title: A meta‐analysis of trait differences between invasive and non‐invasive plant species publication-title: Ecol. Lett. – volume: 33 start-page: 295 year: 2010 end-page: 303 article-title: Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate publication-title: Ecography – volume: 78 start-page: 388 year: 2009 end-page: 395 article-title: Ecomorphological predictors of natal dispersal distances in birds publication-title: J. Anim. Ecol. – volume: 33 start-page: 271 year: 2007 end-page: 283 article-title: Climate and the match or mismatch between predator requirements and resource availability publication-title: Climate Res. – volume: 33 start-page: 63 year: 2006 end-page: 70 article-title: Lentic odonates have larger and more northern ranges than lotic species publication-title: J. Biogeogr. – year: 1958 – volume: 16 start-page: 199 year: 2001 end-page: 204 article-title: Progress in invasion biology: predicting invaders publication-title: Trends Ecol. Evol. – volume: 96 start-page: 13 year: 2008 end-page: 17 article-title: A new framework for predicting invasive plant species publication-title: J. Ecol. – volume: 19 start-page: 695 year: 2010 end-page: 723 article-title: Assessing the vulnerability of European butterflies to climate change using multiple criteria publication-title: Biodivers. Conserv. – volume: 331 start-page: 324 year: 2011 end-page: 327 article-title: Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations publication-title: Science – volume: 164 start-page: 378 year: 2004 end-page: 395 article-title: Changes in dispersal during species’ range expansions publication-title: Am. Nat. – volume: 105 start-page: 11823 year: 2008 end-page: 11826 article-title: Rapid shifts in plant distribution with recent climate change publication-title: Proc. Natl Acad. Sci. USA – volume: 167 start-page: 853 year: 2006 end-page: 866 article-title: Combining population‐dynamic and ecophysiological models to predict climate‐induced insect range shifts publication-title: Am. Nat. – volume: 46 start-page: 787 year: 2009 end-page: 795 article-title: A global risk assessment for the success of bird introductions publication-title: J. Appl. Ecol. – volume: 4 start-page: 385 year: 2002 end-page: 405 article-title: Which species become aliens? publication-title: Evol. Ecol. Res. – volume: 106 start-page: 19737 year: 2009 end-page: 19741 article-title: Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction publication-title: Proc. Natl Acad. Sci. USA – start-page: 295 year: 2005 end-page: 316 – volume: 12 start-page: 2272 year: 2006 end-page: 2281 article-title: The ability of climate envelope models to predict the effect of climate change on species distributions publication-title: Glob. Change Biol. – volume: 446 start-page: 507 year: 2007 end-page: 512 article-title: The delayed rise of present‐day mammals publication-title: Nature – volume: 320 start-page: 1768 year: 2008 end-page: 1771 article-title: A significant upward shift in plant species optimum elevation during the 20th century publication-title: Science – volume: 35 start-page: 695 year: 2010 end-page: 703 article-title: The naturalization to invasion transition: are there introduction‐history correlates of invasiveness in exotic plants of Australia? publication-title: Austral Ecol. – year: 2002 – volume: 276 start-page: 3845 year: 2009 end-page: 3852 article-title: Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines publication-title: Proc. R. Soc. Lond. B Biol. – volume: 5 start-page: 525 year: 2002 end-page: 530 article-title: Possible effects of habitat fragmentation and climate change on the range of forest plant species publication-title: Ecol. Lett. – start-page: 147 year: 1965 end-page: 172 – volume: 13 start-page: s108 year: 2003 end-page: s116 article-title: Dispersal potential of marine invertebrates in diverse habitats publication-title: Ecol. Appl. – volume: 8 start-page: 809 year: 2006 end-page: 821 article-title: Ecological patterns and biological invasions: using regional species inventories in macroecology publication-title: Biol. Invasions – volume: 427 start-page: 145 year: 2004 end-page: 148 article-title: Extinction risk from climate change publication-title: Nature – volume: 213 start-page: 912 year: 2010 end-page: 920 article-title: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’ publication-title: J. Exp. Biol. – start-page: 19 year: 1986 end-page: 34 – year: 2009 – volume: 15 start-page: 732 year: 2009 end-page: 743 article-title: Species traits explain recent range shifts of Finnish butterflies publication-title: Glob. Change Biol. – volume: 40 start-page: 81 year: 2009 end-page: 102 article-title: The role of propagule pressure in biological invasions publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 4 start-page: 313 year: 2001 end-page: 321 article-title: Impacts of landscape structure on butterfly range expansion publication-title: Ecol. Lett. – start-page: 661 year: 2001 end-page: 732 – year: 2001 – volume: 76 start-page: 2028 year: 1995 end-page: 2043 article-title: Spatial variation in abundance publication-title: Ecology – volume: 24 start-page: 477 year: 2008 end-page: 514 article-title: Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing publication-title: Cladistics – volume: 160 start-page: 712 year: 2002 end-page: 726 article-title: Phylogenetic analysis and comparative data: a test and review of evidence publication-title: Am. Nat. – volume: 22 start-page: 5 year: 1999 end-page: 12 article-title: Invasions publication-title: Ecography – volume: 25 start-page: 325 year: 2010 end-page: 331 article-title: A framework for community interactions under climate change publication-title: Trends Ecol. Evol. – start-page: 97 year: 2007 end-page: 125 – volume: 16 start-page: 2923 year: 2010 end-page: 2929 article-title: Adaptation to host plants may prevent rapid insect responses to climate change publication-title: Glob. Change Biol. – volume: 416 start-page: 626 year: 2002 end-page: 629 article-title: Future projections for Mexican faunas under global climate change scenarios publication-title: Nature – volume: 9 start-page: 1 year: 2006 end-page: 44 article-title: Voltinism of Odonata: a review publication-title: Int. J. Odonatol. – volume: 5 start-page: 181 year: 2005 end-page: 183 article-title: Phylomatic: tree assembly for applied phylogenetics publication-title: Mol. Ecol. Notes – year: 2004 – volume: 88 start-page: 1803 year: 2007 end-page: 1812 article-title: Poleward shifts in winter ranges of North American birds publication-title: Ecology – volume: 19 start-page: 496 year: 2010 end-page: 503 article-title: The frog filter: amphibian introduction bias driven by taxonomy, body size and biogeography publication-title: Glob. Ecol. Biogeogr. – volume: 87A start-page: 231 year: 1987 end-page: 249 article-title: Relationships between morphological parameters in birds with different flying habitats publication-title: Comp. Biochem. Physiol. – volume: 35 start-page: 377 year: 2010 end-page: 385 article-title: Body size and social dominance influence breeding dispersal in male (Odonata) publication-title: Ecol. Entomol. – volume: 12 start-page: 1079 year: 2006 end-page: 1093 article-title: Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? publication-title: Glob. Change Biol. – volume: 28 start-page: 495 year: 1997 end-page: 516 article-title: Extinction vulnerability and selectivity: combining ecological and paleontological views publication-title: Annu. Rev. Ecol. Syst. – volume: 3 start-page: e2502 year: 2008 article-title: Climate change and the future of California’s endemic flora publication-title: PLoS ONE – volume: 414 start-page: 65 year: 2001 end-page: 69 article-title: Rapid responses of British butterflies to opposing forces of climate and habitat change publication-title: Nature – volume: 12 start-page: 450 year: 2006 end-page: 455 article-title: The distributions of a wide range of taxonomic groups are expanding polewards publication-title: Glob. Change Biol. – volume: 106 start-page: 19729 year: 2009 end-page: 19736 article-title: Niches, models, and climate change: assessing the assumptions and uncertainties publication-title: Proc. Natl Acad. Sci. USA – volume: 40 start-page: 471 year: 2006 end-page: 483 article-title: Higher‐level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves : Tyrannida) publication-title: Mol. Phylogenet. Evol. – volume: 52 start-page: 657 year: 1998 end-page: 668 article-title: Baker’s law revisited: reproductive assurance in a metapopulation publication-title: Evolution – year: 2003 – volume: 87 start-page: 1896 year: 2006 end-page: 1906 article-title: Predicting biodiversity change: outside the climate envelope, beyond the species‐area curve publication-title: Ecology – volume: 462 start-page: 1052 year: 2009 end-page: 1055 article-title: The velocity of climate change publication-title: Nature – volume: 322 start-page: 261 year: 2008 end-page: 264 article-title: Impact of a century of climate change on small‐mammal communities in Yosemite National Park, USA publication-title: Science – start-page: 153 year: 1996 end-page: 172 – volume: 11 start-page: 502 year: 2005 end-page: 506 article-title: A northward shift of range margins in British Odonata publication-title: Glob. Change Biol. – volume: 15 start-page: 1859 year: 2006 end-page: 1871 article-title: Extinction risk: a comparative analysis of central Asian vertebrates publication-title: Biodivers. Conserv. – year: 1963 – year: 1988 – volume: 20 start-page: 335 year: 2001 end-page: 350 article-title: Molecular phylogeny of the chipmunks inferred from mitochondrial cytochrome b and cytochrome oxidase II gene sequences publication-title: Mol. Phylogenet. Evol. – volume: 89 start-page: 3472 year: 2008 end-page: 3479 article-title: Climate change can cause spatial mismatch of trophically interacting species publication-title: Ecology – volume: 308 start-page: 1912 year: 2005 end-page: 1915 article-title: Climate change and distribution shifts in marine fishes publication-title: Science – volume: 90 start-page: 588 year: 2009 end-page: 597 article-title: Projected climate‐induced faunal change in the Western Hemisphere publication-title: Ecology – volume: 106 start-page: 19637 year: 2009 end-page: 19643 article-title: Birds track their Grinnellian niche through a century of climate change publication-title: Proc. Natl Acad. Sci. USA |
SSID | ssj0012971 |
Score | 2.5855086 |
Snippet | Ecology Letters (2011) 14: 677–689
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little... Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of... Ecology Letters (2011) 14: 677-689 Abstract Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there... |
SourceID | proquest pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 677 |
SubjectTerms | Adaptation, Physiological Animal and plant ecology Animal Migration Animal reproduction Animal, plant and microbial ecology Animals Biological and medical sciences Birds Body Size Climate Change Climatology. Bioclimatology. Climate change Clutch Size Community ecology Dispersal Earth, ocean, space Ecosystem Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects global climate change Homing Behavior life history Meteorology Odonata Passeriformes Passeriformes - physiology Plant Development Plants - anatomy & histology Population Dynamics range expansion Reproduction Seed Dispersal Seeds - anatomy & histology Seeds - physiology |
Title | Do species' traits predict recent shifts at expanding range edges? |
URI | https://api.istex.fr/ark:/67375/WNG-SK0Z669H-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2011.01620.x https://www.ncbi.nlm.nih.gov/pubmed/21535340 https://www.proquest.com/docview/872198202 https://search.proquest.com/docview/883013660 https://search.proquest.com/docview/900628927 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7SQKGXJv2NkzboUHpz8MqWLJ9KyDpd2hAKSUjoRUiWRUtgd1nvwuaW18jr9UkyI21ctqSX0puwJBtrNKPvk2ZGAB9U4axA65iasrRpITyWrKtSJ6xyshFVG1IKjc7K0ys1rClNzpeHWJiYH6LfcCPNCPaaFNzY7k8lRyrMo4fW4ADBC88OCE8iaQjRHPm3_kCBV5F7xS751bpTz6MvQrhKI70kd0nT4Yj5eNXFY1h0HdqGtel463_-1TY8XyFUdhin1AvYaMcv4Wm8s_IGS3XIc33zCobDCaNATeTav27vGF02Me_YdEZHP3OGlhTXM9b9-OnxqZmzdjmNITRsRgENjDbyuk-v4eK4Pj8apatLGdIGoVKWOsdlaW2rLLdIFzPpBtwMGoVAIHNVYa1rlONtYb1ywjdkEnxjjHROWoPsJX8Dm-PJuN0B5r2QpfS5bJDVYRujpM9yxG_CKCNEnsDHIAA9jYk3tJldkx9aKfTl6Wd99jX7LmU10pcJ7K9JqO_AC7RXUskE9h5Eplc62mmF5LdCAMQTYH0tKhedmJhxO1lgE5VTTjuZ_b1JFaJQK14m8DbOhd9fx9UE9QA7yyDyvmKNeA00CVuTsHUQtl7q-qSm0u6_dtyDZ3Hvm9yK38HmfLZo38OTzi32g1rcAyLiCZY |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB7BIgQX_hfCwuID4pZV6sSOc0KIZilqqZB20a64WHYcC4TUVk0rdW-8Bq_HkzBjd4OKlgviZsWeRPF4xt-MZ8YAL1XhrEDtmJqytGkhPLasq1InrHKyEVUbSgqNTsrpuRrWVCZnfJkLE-tD9A43koygr0nAySH9p5SjLcxjiNbgCNELz44QUN4oJK5LyufIP_ZHCryK1lekyc93w3qufBMCVprrDQVMmg7nzMfLLq5Co7vgNuxOx3f_63_dgztbkMrexFV1H661swdwM15beYGtOpS6vngIw-GcUa4mmts_v_9gdN_EqmOLJZ3-rBgqU9zSWPflq8enZsXazSJm0bAl5TQw8uV1rx_Bp-P69O0o3d7LkDaIlrLUOS5La1tluUWLMZNuwM2gUYgFMlcV1rpGOd4W1isnfENawTfGSOekNWjA5PuwN5vP2ifAvBeylD6XDRp2OMYo6bMcIZwwygiRJ_AqcEAvYu0NbZbfKBStFPps-k6fjLPPUlYjfZbA4Q6LegJeoMqSSiZwcMkzvRXTTiu0fyvEQDwB1veifNGhiZm18zUOUTmVtZPZ34dUIRG14mUCj-Ni-P113FBQFJBYBp73HTu210ATszUxWwdm642uJzW1nv4r4Qu4NTr9MNGT99PxAdyOrnCKMn4Ge6vlun0O1zu3Pgwy8gv4zQ2- |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BEYhL-S2EQvEBcUuVdWLHOSHEZllotapUUCsulh3HAiHtrja70vbW1-D1eBJm7G3QonJB3KzYkygez_gbe34AXqnCWYHaMTVladNCeGxZV6VOWOVkI6o2pBQan5aTczWsKU3Ox6tYmJgfoj9wI8kI-poEfO78n0KOpjCPHlqDQwQvPDtEPHmrQFROefTz_KS_UeBVNL4iTX6-7dVz7ZsQr9JUr8lf0nQ4ZT7WurgOjG5j27A5je79z9-6D7sbiMrexjX1AG6004dwOxatvMBWHRJdXzyC4XDGKFITje2flz8YVZtYdmy-oLufJUNVihsa675-8_jULFm7nscYGragiAZGJ3ndm8fweVR_ejdON1UZ0gaxUpY6x2Vpbasst2gvZtINuBk0CpFA5qrCWtcox9vCeuWEb0gn-MYY6Zy0Bs2XfA92prNp-xSY90KW0ueyQbMOxxglfZYjgBNGGSHyBF4HBuh5zLyhzeI7OaKVQp9N3uvTo-yLlNVYnyVwsMWhnoAXqLCkkgnsX7FMb4S00wqt3woREE-A9b0oXXRlYqbtbIVDVE5J7WT29yFVCEOteJnAk7gWfn8dtxMUBCSWgeV9x5blNdDEbE3M1oHZeq3r45paz_6V8CXcORmO9PGHydE-3I3n4ORi_Bx2lotV-wJudm51ECTkF5L0DGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+species%E2%80%99+traits+predict+recent+shifts+at+expanding+range+edges%3F&rft.jtitle=Ecology+letters&rft.au=Angert%2C+Amy+L.&rft.au=Crozier%2C+Lisa+G.&rft.au=Rissler%2C+Leslie+J.&rft.au=Gilman%2C+Sarah+E.&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=7&rft.spage=677&rft.epage=689&rft_id=info:doi/10.1111%2Fj.1461-0248.2011.01620.x&rft.externalDBID=10.1111%252Fj.1461-0248.2011.01620.x&rft.externalDocID=ELE1620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |