Envelope-type lipid nanoparticles incorporating a short PEG-lipid conjugate for improved control of intracellular trafficking and transgene transcription
Abstract Lipid envelope-type nanoparticles are promising carriers for gene delivery. The modification of liposomes with polyethyleneglycol (PEG) can often be useful in liposomal formation and pharmacokinetics. However, there is a dilemma concerning the use of PEG because of its poor intracellular tr...
Saved in:
Published in: | Biomaterials Vol. 30; no. 27; pp. 4806 - 4814 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Ltd
01-09-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Lipid envelope-type nanoparticles are promising carriers for gene delivery. The modification of liposomes with polyethyleneglycol (PEG) can often be useful in liposomal formation and pharmacokinetics. However, there is a dilemma concerning the use of PEG because of its poor intracellular trafficking properties. To overcome this problem, in the present study, we report on a strategy for improving the intracellular trafficking of PEG-modified lipid particles by incorporating a short PEG lipid. The findings presented here show that the incorporation of tetra(ethylene)glycol (TEG)-conjugated cholesterol into a liposome composition is useful in controlling the number of lipid envelopes, resulting in an improvement in particle uniformity with a reduced particle size. The TEG-modified lipid particles were found to enhance transfection activity by more than 100-fold. This increase is attributed to an enhancement of cellular uptake, and nuclear transcription by improving intracellular decoating. Moreover, the use of a various short PEG lipids in lipid particle formation showed a clear threshold polymerization degree (less or equal 25: PEG1100 ), for achieving stimulated transfection activity. Collectively, the use of short PEG lipid promises to be useful in developing an efficient non-viral gene vector. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2009.05.036 |