Simulation of a balloon expandable stent in a realistic coronary artery—Determination of the optimum modelling strategy
Abstract Computational models of stent deployment in arteries have been widely used to shed light on various aspects of stent design and optimisation. In this context, modelling of balloon expandable stents has proved challenging due to the complex mechanics of balloon–stent interaction and the diff...
Saved in:
Published in: | Journal of biomechanics Vol. 43; no. 11; pp. 2126 - 2132 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
10-08-2010
Elsevier Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Computational models of stent deployment in arteries have been widely used to shed light on various aspects of stent design and optimisation. In this context, modelling of balloon expandable stents has proved challenging due to the complex mechanics of balloon–stent interaction and the difficulties involved in creating folded balloon geometries. In this study, a method to create a folded balloon model is presented and utilised to numerically model the accurate deployment of a stent in a realistic geometry of an atherosclerotic human coronary artery. Stent deployment is, however, commonly modelled by applying an increasing pressure to the stent, thereby neglecting the balloon. This method is compared to the realistic balloon expansion simulation to fully elucidate the limitations of this procedure. The results illustrate that inclusion of a realistic balloon model is essential for accurate modelling of stent deformation and stent stresses. An alternative balloon simulation procedure is presented however, which overcomes many of the limitations of the applied pressure approach by using elements which restrain the stent as the desired diameter is achieved. This study shows that direct application of pressure to the stent inner surface may be used as an optimal modelling strategy to estimate the stresses in the vessel wall using these restraining elements and hence offer a very efficient alternative approach to numerically modelling stent deployment within complex arterial geometries. The method is limited however, in that it can only predict final stresses in the stented vessel and not those occurring during stent expansion, in which case the balloon expansion model is required. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2010.03.050 |