Development of an algorithm to automatically compress a CT image to visually lossless threshold

To develop an algorithm to predict the visually lossless thresholds (VLTs) of CT images solely using the original images by exploiting the image features and DICOM header information for JPEG2000 compression and to evaluate the algorithm in comparison with pre-existing image fidelity metrics. Five r...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical imaging Vol. 18; no. 1; pp. 53 - 9
Main Authors: Nam, Chang-Mo, Lee, Kyong Joon, Ko, Yousun, Kim, Kil Joong, Kim, Bohyoung, Lee, Kyoung Ho
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 17-12-2018
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To develop an algorithm to predict the visually lossless thresholds (VLTs) of CT images solely using the original images by exploiting the image features and DICOM header information for JPEG2000 compression and to evaluate the algorithm in comparison with pre-existing image fidelity metrics. Five radiologists independently determined the VLT for 206 body CT images for JPEG2000 compression using QUEST procedure. The images were divided into training (n = 103) and testing (n = 103) sets. Using the training set, a multiple linear regression (MLR) model was constructed regarding the image features and DICOM header information as independent variables and regarding the VLTs determined with median value of the radiologists' responses (VLT ) as dependent variable, after determining an optimal subset of independent variables by backward stepwise selection in a cross-validation scheme. The performance was evaluated on the testing set by measuring absolute differences and intra-class correlation (ICC) coefficient between the VLT and the VLTs predicted by the model (VLT ). The performance of the model was also compared two metrics, peak signal-to-noise ratio (PSNR) and high-dynamic range visual difference predictor (HDRVDP). The time for computing VLTs between MLR model, PSNR, and HDRVDP were compared using the repeated ANOVA with a post-hoc analysis. P < 0.05 was considered to indicate a statistically significant difference. The means of absolute differences with the VLT were 0.58 (95% CI, 0.48, 0.67), 0.73 (0.61, 0.85), and 0.68 (0.58, 0.79), for the MLR model, PSNR, and HDRVDP, respectively, showing significant difference between them (p < 0.01). The ICC coefficients of MLR model, PSNR, and HDRVDP were 0.88 (95% CI, 0.81, 0.95), 0.85 (0.79, 0.91), and 0.84 (0.77, 0.91). The computing times for calculating VLT per image were 1.5 ± 0.1 s, 3.9 ± 0.3 s, and 68.2 ± 1.4 s, for MLR metric, PSNR, and HDRVDP, respectively. The proposed MLR model directly predicting the VLT of a given CT image showed competitive performance to those of image fidelity metrics with less computational expenses. The model would be promising to be used for adaptive compression of CT images.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2342
1471-2342
DOI:10.1186/s12880-017-0244-2