Different roles of nitric oxide synthase-1 and -2 between herpetic and postherpetic allodynia in mice

Abstract We investigated using the mice role of nitric oxide synthase (NOS) in the spinal dorsal horn in herpetic and postherpetic pain, especially allodynia, which was induced by transdermal inoculation of the hind paw with herpes simplex virus type-1 (HSV-1). The virus inoculation induced NOS2 exp...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience Vol. 150; no. 2; pp. 459 - 466
Main Authors: Sasaki, A, Mabuchi, T, Serizawa, K, Takasaki, I, Andoh, T, Shiraki, K, Ito, S, Kuraishi, Y
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 05-12-2007
Elsevier
Subjects:
NO
L
S
PBS
NOS
SMT
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We investigated using the mice role of nitric oxide synthase (NOS) in the spinal dorsal horn in herpetic and postherpetic pain, especially allodynia, which was induced by transdermal inoculation of the hind paw with herpes simplex virus type-1 (HSV-1). The virus inoculation induced NOS2 expression in the lumbar dorsal horn of mice with herpetic allodynia, but not postherpetic allodynia. There were no substantial alternations in the expression level of NOS1 at the herpetic and postherpetic stages. Herpetic allodynia was significantly inhibited by i.p. administration of the selective NOS2 inhibitor S-methylisothiourea, but not the selective NOS1 inhibitor 7-nitroindazole. NOS2 expression was observed around HSV-1 antigen-immunoreactive cells. On the other hand, postherpetic allodynia was significantly inhibited by i.p. administration of 7-nitroindazole, but not S-methylisothiourea. The activity of reduced nicotinamide adenine dinucleotide phosphate diaphorase, an index of NOS1 activity, significantly increased in the laminae I and II of the lumbar dorsal horn of mice with postherpetic allodynia, but not mice without postherpetic allodynia. The expression level of NOS1 mRNA in the dorsal root ganglia was similar between mice with and without postherpetic allodynia. The results suggest that herpetic and postherpetic allodynia is mediated by nitric oxide in the dorsal horn and that NOS2 and NOS1 are responsible for herpetic and postherpetic allodynia, respectively. It may be worth testing the effects of NOS2 and NOS1 inhibitors on herpetic pain and postherpetic neuralgia in human subjects, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2007.09.067