The role of extrahepatic retinol binding protein in the mobilization of retinoid stores

Although the major tissue site of retinol binding protein (RBP) synthesis in the body is the liver, other sites of synthesis have been reported. The physiological role(s) of circulating RBP that is produced and secreted extrahepatically has not been systematically investigated. To address this quest...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research Vol. 45; no. 11; pp. 1975 - 1982
Main Authors: Quadro, Loredana, Blaner, William S., Hamberger, Leora, Novikoff, Phyllis M., Vogel, Silke, Piantedosi, Roseann, Gottesman, Max E., Colantuoni, Vittorio
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-11-2004
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the major tissue site of retinol binding protein (RBP) synthesis in the body is the liver, other sites of synthesis have been reported. The physiological role(s) of circulating RBP that is produced and secreted extrahepatically has not been systematically investigated. To address this question, we used as a model a mouse strain (hRBP−/−) that expresses human RBP (hRBP) cDNA under the control of the mouse muscle creatine kinase promoter in an rbp-null background (RBP−/−). By comparing hRBP−/−, RBP−/−, and wild-type mice, we asked whether extrahepatic RBP can perform all of the physiological functions of RBP synthesized in the liver. We demonstrate that extrahepatically synthesized hRBP, unlike RBP expressed in liver, cannot mobilize liver retinoid stores. Consistent with this conclusion, we find that circulating hRBP is not taken up by hepatocytes. RBP has been proposed to play an essential role in distributing hepatic retinoids between hepatocytes and hepatic stellate cells. We find, however, that the distribution of retinoid in the livers of the three mouse strains described above is identical. Thus, RBP is not required for intrahepatic transport and storage of retinoid. These and other observations are discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M400137-JLR200