Daily electrical activity in the master circadian clock of a diurnal mammal

Circadian rhythms in mammals are orchestrated by a central clock within the suprachiasmatic nuclei (SCN). Our understanding of the electrophysiological basis of SCN activity comes overwhelmingly from a small number of nocturnal rodent species, and the extent to which these are retained in day-active...

Full description

Saved in:
Bibliographic Details
Published in:eLife Vol. 10
Main Authors: Bano-Otalora, Beatriz, Moye, Matthew J, Brown, Timothy, Lucas, Robert J, Diekman, Casey O, Belle, Mino Dc
Format: Journal Article
Language:English
Published: England eLife Science Publications, Ltd 30-11-2021
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Circadian rhythms in mammals are orchestrated by a central clock within the suprachiasmatic nuclei (SCN). Our understanding of the electrophysiological basis of SCN activity comes overwhelmingly from a small number of nocturnal rodent species, and the extent to which these are retained in day-active animals remains unclear. Here, we recorded the spontaneous and evoked electrical activity of single SCN neurons in the diurnal rodent , and developed cutting-edge data assimilation and mathematical modeling approaches to uncover the underlying ionic mechanisms. As in nocturnal rodents, SCN neurons were more excited during daytime hours. By contrast, the evoked activity of neurons included a prominent suppressive response that is not present in the SCN of nocturnal rodents. Our modeling revealed and subsequent experiments confirmed transient subthreshold A-type potassium channels as the primary determinant of this response, and suggest a key role for this ionic mechanism in optimizing SCN function to accommodate 's diurnal niche.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.68179