Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life
The evolution of oxygenic photosynthesis and ensuing oxygenation of Earth's atmosphere represent a major transition in the history of life. Although many organisms retreated to anoxic environments, others evolved to use oxygen as a high-potential redox couple while concomitantly mitigating its...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 311; no. 5768; pp. 1764 - 1767 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Association for the Advancement of Science
24-03-2006
The American Association for the Advancement of Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The evolution of oxygenic photosynthesis and ensuing oxygenation of Earth's atmosphere represent a major transition in the history of life. Although many organisms retreated to anoxic environments, others evolved to use oxygen as a high-potential redox couple while concomitantly mitigating its toxicity. To understand the changes in biochemistry and enzymology that accompanied adaptation to O₂, we integrated network analysis with information on enzyme evolution to infer how oxygen availability changed the architecture of metabolic networks. Our analysis revealed the existence of four discrete groups of networks of increasing complexity, with transitions between groups being contingent on the presence of key metabolites, including molecular oxygen, which was required for transition into the largest networks. |
---|---|
Bibliography: | http://www.scienceonline.org/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1118439 |