Bifurcation Generated Mechanical Frequency Comb
We demonstrate a novel response of a nonlinear micromechanical resonator when operated in a region of strong, nonlinear mode coupling. The system is excited with a single drive signal and its response is characterized by periodic amplitude modulations that occur at timescales based on system paramet...
Saved in:
Published in: | Physical review letters Vol. 121; no. 24; p. 244302 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Physical Society
14-12-2018
American Physical Society (APS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a novel response of a nonlinear micromechanical resonator when operated in a region of strong, nonlinear mode coupling. The system is excited with a single drive signal and its response is characterized by periodic amplitude modulations that occur at timescales based on system parameters. The periodic amplitude modulations of the resonator are a consequence of nonlinear mode coupling and are responsible for the emergence of a "frequency-comb" regime in the spectral response. By considering a generic model for a 1∶3 internal resonance, we demonstrate that the novel behavior results from a saddle node on an invariant circle (SNIC) bifurcation. The ability to control the operating parameters of the micromechanical structures reported here makes the simple micromechanical resonator an ideal test bed to study the dynamic response of SNIC behavior demonstrated in mechanical, optical, and biological systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-06CH11357 Swedish Research Council (SRC) USDOE Office of Science (SC) National Science Foundation (NSF) |
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/physrevlett.121.244302 |