孤岛风柴蓄复合发电功率粒子群优化分配研究

利用可再生能源发电是海岛解决用电和吃水难问题的有效途径之一。对南海某海岛的风力资源和用电负荷分析后,提出采用风柴蓄复合发电蓄电为海岛提供电力,多余电力用于海水淡化的方案。在风柴蓄复合发电的功率设计中往往依靠经验,提出应用改进的粒子群优化方法对孤岛风柴蓄复合发电的风力发电机组台数、柴油机台数和蓄电池容量进行优化设计,优化中采用度电成本最小作为目标,最小失电率作为约束条件,能量调度按照首先应用可再生能源发电,其次是蓄电池电量,最后调用柴油机发电的策略。结果显示,改进优化方法的效率比基本的粒子群优化算法稍低,但是可以得到更加优化的结果。进一步分析了当柴油价格、负荷、蓄电池价格和风力发电机成本变化后,...

Full description

Saved in:
Bibliographic Details
Published in:电力系统保护与控制 Vol. 41; no. 11; pp. 85 - 92
Main Author: 许昌 李旻 任岩 刘德有 郑源
Format: Journal Article
Language:Chinese
Published: 河海大学能源与电气学院,江苏 南京 210098 2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:利用可再生能源发电是海岛解决用电和吃水难问题的有效途径之一。对南海某海岛的风力资源和用电负荷分析后,提出采用风柴蓄复合发电蓄电为海岛提供电力,多余电力用于海水淡化的方案。在风柴蓄复合发电的功率设计中往往依靠经验,提出应用改进的粒子群优化方法对孤岛风柴蓄复合发电的风力发电机组台数、柴油机台数和蓄电池容量进行优化设计,优化中采用度电成本最小作为目标,最小失电率作为约束条件,能量调度按照首先应用可再生能源发电,其次是蓄电池电量,最后调用柴油机发电的策略。结果显示,改进优化方法的效率比基本的粒子群优化算法稍低,但是可以得到更加优化的结果。进一步分析了当柴油价格、负荷、蓄电池价格和风力发电机成本变化后,优化出新的风力发电机、柴油发电机和蓄电池配置,分析了优化配置变化的原因。研究可以为在孤立海岛采用风柴蓄复合发电蓄电的设计提供参考。
Bibliography:Renewable energy is one of reliable approaches to provide electric power and fresh water in a solitary island. This paper analyzes the wind resource and power load from an island in South China Sea, proposes a wind-diesel-storage hybrid power system to provide electric power, and additional electric power is used to desalinate seawater. Wind-diesel-storage hybrid system power distribution design often relies on the experience, and this paper applies the improved PSO method to distribute the wind turbine generator number, diesel generator number and the storage battery capacity. The minimum of kWh cost is chosen as objective function, and the minimum loss of load probability (LLP) is chosen for constraint term. The energy is dispatched in order of wind turbine power, storage battery power and diesel generator power sequence during optimizing. Results show the improved PSO method has a little lower efficiency, but higher accuracy than standard PSO. This paper also predicts the power distribution results when th
ISSN:1674-3415