A New ISL1 Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle
Occurring in about 1% of all live births, congenital heart defects (CHDs) represent the most frequent type of developmental abnormality and account for remarkably increased infant morbidity and mortality. Aggregating studies demonstrate that genetic components have a key role in the occurrence of CH...
Saved in:
Published in: | International Heart Journal Vol. 60; no. 5; pp. 1113 - 1122 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Tokyo
International Heart Journal Association
27-09-2019
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Occurring in about 1% of all live births, congenital heart defects (CHDs) represent the most frequent type of developmental abnormality and account for remarkably increased infant morbidity and mortality. Aggregating studies demonstrate that genetic components have a key role in the occurrence of CHDs. Nevertheless, due to pronounced genetic heterogeneity, the genetic causes of CHDs remain unclear in most patients. In this research, 114 unrelated patients affected with CHDs and 218 unrelated individuals without CHDs served as controls were recruited. The coding regions and splicing donors/acceptors of the ISL1 gene, which codes for a transcription factor required for proper cardiovascular development, were screened for mutations by sequencing in all study participants. The functional characteristics of an identified ISL1 mutation were delineated with a dual-luciferase reporter assay system. As a result, a new heterozygous ISL1 mutation, NM_002202.2: c.225C>G; p. (Tyr75*), was discovered in an index patient with double outlet right ventricle and ventricular septal defect. Analysis of the proband's family unveiled that the mutation co-segregated with the CHD phenotype. The nonsense mutation was absent in the 436 control chromosomes. Biological analysis showed that the mutant ISL1 protein had no transcriptional activity. Furthermore, the mutation nullified the synergistic activation between ISL1 and TBX20, another CHD-associated transcription factor. This research for the first time links an ISL1 loss-of-function mutation to double outlet right ventricle in humans, which adds insight to the molecular pathogenesis underpinning CHDs, suggesting potential implications for timely personalized management of CHD patients. |
---|---|
ISSN: | 1349-2365 1349-3299 |
DOI: | 10.1536/ihj.18-685 |