Soft Computing Models to Predict Pavement Roughness: A Comparative Study
Pavement roughness as a critical determinant of public satisfaction can potentially play a major role in road or highway resource allocation to competing pavement resurfacing projects. With this in mind, the aim of the present paper is to develop an accurate model for the prediction of pavement roug...
Saved in:
Published in: | Advances in civil engineering Vol. 2018; no. 2018; pp. 1 - 8 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Cairo, Egypt
Hindawi Publishing Corporation
01-01-2018
Hindawi Hindawi Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pavement roughness as a critical determinant of public satisfaction can potentially play a major role in road or highway resource allocation to competing pavement resurfacing projects. With this in mind, the aim of the present paper is to develop an accurate model for the prediction of pavement roughness in terms of the International Roughness Index (IRI) using artificial neural networks (ANNs) and support vector machines (SVMs). The modeling is based on pavement roughness data collected periodically for a high-volume motorway during a seven-year period, on a yearly basis. The comparative study of the developed models concludes that the performance of the ANN model is slightly better compared to the SVM in terms of prediction accuracy. Further, the analysis results produce evidence in support of the statement that both models are capable to predict accurately pavement roughness; hence, they are deemed useful for supporting decision making of pavement maintenance and rehabilitation strategies. |
---|---|
ISSN: | 1687-8086 1687-8094 |
DOI: | 10.1155/2018/5939806 |