Platelet-Rich Fibrin-Conditioned Medium as an Alternative to Fetal Bovine Serum Promotes Osteogenesis of Human Dental Pulp Stem Cells

Human dental pulp stem cells (DPSCs) exhibit multilineage differentiation capabilities and superior clonogenic and proliferative properties. However, the use of animal-derived components such as FBS raises concerns regarding the clinical application of stem-cell-based therapies. Platelet-rich fibrin...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) Vol. 10; no. 10; p. 1196
Main Authors: Hatori, Ayano, Yamakawa, Daiki, Al-Maawi, Sarah, Dohle, Eva, Chikira, Jin, Fujii, Yasuyuki, Miki, Megumu, Sader, Robert, Chikazu, Daichi, Ghanaati, Shahram, Kawase-Koga, Yoko
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-10-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human dental pulp stem cells (DPSCs) exhibit multilineage differentiation capabilities and superior clonogenic and proliferative properties. However, the use of animal-derived components such as FBS raises concerns regarding the clinical application of stem-cell-based therapies. Platelet-rich fibrin (PRF) derived from human blood is rich in fibrin, platelets, and growth factors and acts as a bioactive scaffold for grafting with biomaterials. In this study, we assessed the efficacy of PRF-conditioned medium (CM) in promoting DPSCs proliferation and osteogenic differentiation compared with the standard culture medium supplemented with FBS. A comparison of DPSCs cultured in FBS and PRF-CM revealed no differences in characteristics or morphology. However, cells cultured with PRF-CM exhibited inferior proliferation rates and cell numbers during passage in comparison with those cultured with FBS. In contrast, DPSCs cultured in PRF-CM showed significantly higher levels of calcification, and RT-PCR confirmed that the gene expression levels of markers associated with osteoblast differentiation were significantly increased. The PRF-CM approach offers a convenient, straightforward, and advantageous method for culturing DPSCs, without relying on animal-derived components. In summary, this study introduces a novel application of PRF-CM for enhancing the osteogenesis of DPSCs, which provides an alternative to FBS culture medium and addresses concerns associated with the use of animal-derived components in clinical settings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering10101196