Suppression of autophagy enhances preferential toxicity of paclitaxel to folliculin-deficient renal cancer cells
Paclitaxel, a widely used chemotherapeutic drug, can induce apoptosis in variety of cancer cells. A previous study has shown preferential toxicity of paclitaxel to FLCN-deficient kidney cancer cell line, UOK257. In this report, we investigate the cellular and molecular mechanism of paclitaxel-induce...
Saved in:
Published in: | Journal of experimental & clinical cancer research Vol. 32; no. 1; p. 99 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
04-12-2013
BioMed Central |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Paclitaxel, a widely used chemotherapeutic drug, can induce apoptosis in variety of cancer cells. A previous study has shown preferential toxicity of paclitaxel to FLCN-deficient kidney cancer cell line, UOK257. In this report, we investigate the cellular and molecular mechanism of paclitaxel-induced autophagy and apoptosis in renal cancer cells with and without FLCN expression.
Two pairs of cell lines were used: FLCN siRNA-silenced ACHN cell line (ACHN-5968) and scrambled ACHN cell line (ACHN-sc); FLCN-null UOK257 cell line and UOK257-2 cell line restored with ectopic expression of FLCN. Autophagy was examined by western blot, GFP-LC3, transmission electron microscopy, and MDC assay. Cell viability and apoptosis were detected using MTT assay, DAPI stain and TUNEL assay. After inhibition of autophagy with 3-Methyladenine (3-MA) or Beclin 1 siRNA, cell viability and apoptosis were measured by MTT assay and TUNEL assay.
After paclitaxel treatment, a dose-dependent decrease in cell viability and increase in apoptosis were observed in FLCN-deficient UOK257 and ACHN-5968 cells compared to their FLCN-expressing counterparts, suggesting that renal cancer cells without FLCN were more sensitive to paclitaxel. Enhanced autophagy was found to be associated with paclitaxel treatment in FLCN-deficient RCC cells. The MAPK pathway was also identified as a key pathway for the activation of autophagy in these kidney cancer cells. Inhibition of phosphorylated ERK with ERK inhibitor U0126 showed a significant decrease in autophagy. Furthermore, after inhibition of autophagy with 3-Methyladenine (3-MA) or Beclin 1 siRNA, apoptosis induced by paclitaxel was significantly increased in FLCN-deficient UOK257 and ACHN-5968 cells.
Preferential toxicity of paclitaxel to FLCN-deficient kidney cancer cells is associated with enhanced autophagy. Suppression of autophagy further enhances paclitaxel-induced apoptosis in FLCN-deficient renal cancer cells. Our results suggest that paclitaxel combined with an autophagy inhibitor might be a potentially more effective chemotherapeutic approach for FLCN-deficient renal cancer. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1756-9966 0392-9078 1756-9966 |
DOI: | 10.1186/1756-9966-32-99 |