Artifact reduction in magnetoneurography based on time-delayed second-order correlations

Artifacts in magnetoneurography data due to endogenous biological noise sources, like the cardiac signal, can be four orders of magnitude higher than the signal of interest. Therefore, it is important to establish effective artifact reduction methods. We propose a blind source separation algorithm u...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 47; no. 1; pp. 75 - 87
Main Authors: Ziehe, A., Muller, K.-R., Nolte, G., Mackert, B.-M., Curio, G.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-01-2000
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artifacts in magnetoneurography data due to endogenous biological noise sources, like the cardiac signal, can be four orders of magnitude higher than the signal of interest. Therefore, it is important to establish effective artifact reduction methods. We propose a blind source separation algorithm using only second-order temporal correlations for cleaning biomagnetic measurements of evoked responses in the peripheral nervous system. The algorithm showed its efficiency by eliminating disturbances originating from biological and technical noise sources and successfully extracting the signal of interest. This yields a significant improvement of the neuro-magnetic source analysis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0018-9294
1558-2531
DOI:10.1109/10.817622