Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides
Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduc...
Saved in:
Published in: | Advanced energy materials Vol. 4; no. 14; pp. np - n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Blackwell Publishing Ltd
01-10-2014
Wiley Subscription Services, Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS. |
---|---|
Bibliography: | ark:/67375/WNG-130PP9GL-4 istex:2D1237BFAB6127F187A12E55DF5D63DF61D3BBFF U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award - No. DE-SC0001054 ArticleID:AENM201400452 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 DE-AC05-00OR22725 USDOE Office of Science (SC) |
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201400452 |