SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis

Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWRlc and H2A.Z have been shown to con- trol gene expression underlying development and environmental responses. Although they have b...

Full description

Saved in:
Bibliographic Details
Published in:Molecular plant Vol. 9; no. 7; pp. 1051 - 1065
Main Authors: Berriri, Souha, Gangappa, Sreeramaiah N., Kumar, S. Vinod
Format: Journal Article
Language:English
Published: England Elsevier Inc 06-07-2016
Oxford University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWRlc and H2A.Z have been shown to con- trol gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well under- stood. In this study, we analyzed the roles of the SWRlc subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWRlc components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWRlc components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expres- sion analyses similarly reveal distinct roles for H2A.Z and SWRlc components in gene regulation, and sug- gest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWRlc components could have non-redundant functions in plant immunity and gene regulation.
Bibliography:31-2013/Q
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWRlc and H2A.Z have been shown to con- trol gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well under- stood. In this study, we analyzed the roles of the SWRlc subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWRlc components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWRlc components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expres- sion analyses similarly reveal distinct roles for H2A.Z and SWRlc components in gene regulation, and sug- gest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWRlc components could have non-redundant functions in plant immunity and gene regulation.
arabidopsis, SWR1, chromatin remodeling, H2A.Z, immunity, gene regulation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-2052
1752-9867
DOI:10.1016/j.molp.2016.04.003