Sustainable Chitosan/Polybenzoxazine Films: Synergistically Improved Thermal, Mechanical, and Antimicrobial Properties

Polybenzoxazines (Pbzs) are considered as an advanced class of thermosetting phenolic resins as they overcome the shortcomings associated with novolac and resole type phenolic resins. Several advantages of these materials include curing without the use of catalysts, release of non-toxic by-products...

Full description

Saved in:
Bibliographic Details
Published in:Polymers Vol. 15; no. 4; p. 1021
Main Authors: Periyasamy, Thirukumaran, Asrafali, Shakila Parveen, Raorane, Chaitany Jayprakash, Raj, Vinit, Shastri, Divya, Kim, Seong-Cheol
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-02-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polybenzoxazines (Pbzs) are considered as an advanced class of thermosetting phenolic resins as they overcome the shortcomings associated with novolac and resole type phenolic resins. Several advantages of these materials include curing without the use of catalysts, release of non-toxic by-products during curing, molecular design flexibility, near-zero shrinkage of the cured materials, low water absorption and so on. In spite of all these advantages, the brittleness of Pbz is a knotty problem that could be solved by blending with other polymers. Chitosan (Ch), has been extensively investigated in this context, but its thermal and mechanical properties rule out its practical applications. The purpose of this work is to fabricate an entirely bio-based Pbz films by blending chitosan with benzoxazine (Bzo), which is synthesized from curcumin and furfuryl amine (curcumin-furfurylamine-based Bzo, C-fu), by making use of a benign Schiff base chemistry. FT-IR and H-NMR spectroscopy were used to confirm the structure of C-fu. The impact of chitosan on benzoxazine polymerization was examined using FT-IR and DSC analyses. Further evidence for synergistic interactions was provided by DSC, SEM, TGA, and tensile testing. By incorporating C-fu into Ch, Ch-grafted-poly(C-fu) films were obtained with enhanced chemical resistance and tensile strength. The bio-based polymer films produced inhibited the growth of and , by reversible labile linkages, expanding Ch galleries, and releasing phenolic species, which was 125 times stronger than bare Ch. In addition, synthesized polybenzoxazine films [Ch/Poly(C-fu)] showed significant dose-dependent antibiofilm activity against and as determined by confirmed by confocal laser scanning microscopy (CLSM). This study suggests that bio-based Ch-graft-polymer material provide improved anti-bacterial property and characteristics that may be considered as a possibility in the near future for wound healing and implant applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors have contributed equally to this work.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15041021