Assessing the potential of urban wind energy in a major UK city using an analytical model

An analytical methodology for predicting above-roof mean wind speeds in urban areas is first used to map wind speeds over four different UK cities. The methodology utilises detailed geometric data describing buildings and vegetation to calculate the aerodynamic characteristics of the urban surfaces,...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy Vol. 60; pp. 701 - 710
Main Authors: Millward-Hopkins, J.T., Tomlin, A.S., Ma, L., Ingham, D.B., Pourkashanian, M.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-12-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An analytical methodology for predicting above-roof mean wind speeds in urban areas is first used to map wind speeds over four different UK cities. The methodology utilises detailed geometric data describing buildings and vegetation to calculate the aerodynamic characteristics of the urban surfaces, and accounts for the influence of building height heterogeneity and wind direction upon wind profiles. The initial objective of the work is to determine the accuracy of the methodology when using detailed geometric data describing building roof shapes in addition to their heights, to estimate surface aerodynamic parameters. By integrating detailed LiDAR (light detection and ranging) data into the methodology and comparing the predictions with measured data, predictive accuracy is found to improve significantly with respect to previous results obtained using less detailed geometric datasets which describe each building with a single height. Subsequently, a preliminary evaluation of the cumulative, city-scale potential for generating wind energy is made, using the UK City of Leeds as a case study. The results suggest that from the point of view of wind resource, 2000 to 9500 viable building-mounted wind turbine locations may exist in Leeds, highlighting the potential for this technology to be far more widely deployed than has presently been achieved. However, the calculations are shown to be highly sensitive to the viable wind speed selected, which in turn depends on financial support and technological progress. An investigation is then made into where, in general, viable roof-top turbine locations may be found. The results suggest that there are viable sites distributed throughout the city, including within the complex city centre, where at the most suitable locations above-roof wind speeds may be comparable to those observed at well exposed rural sites. However, in residential areas, consisting of groups of buildings of similar heights, it is likely that the majority of properties will be unsuitable turbine locations. The wind maps and methodology described in this paper may be utilised by turbine suppliers and customers for assessing the viability of potential sites, as well as being instructive for policymakers developing subsidies for small-scale renewable energy projects. •A wind atlas methodology is used to map wind speeds over four major UK cities.•Detailed LiDAR data describing buildings and vegetation is integrated into the model.•The predictive accuracy of the model is improved relative to previous work.•The cumulative potential for generating wind energy in a major UK city is assessed.•A largely untapped urban wind resource is suggested to exist.
Bibliography:http://dx.doi.org/10.1016/j.renene.2013.06.020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2013.06.020