Research on improved level set image segmentation method
Aiming at the shortcomings of the traditional level set model which only has good robustness to the weak boundary and strong noise of the original target image, this paper proposes an improved algorithm based on the no-weight initialization level set model, introducing bilateral filters and using im...
Saved in:
Published in: | PloS one Vol. 18; no. 6; p. e0282909 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
21-06-2023
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aiming at the shortcomings of the traditional level set model which only has good robustness to the weak boundary and strong noise of the original target image, this paper proposes an improved algorithm based on the no-weight initialization level set model, introducing bilateral filters and using implicit surface level sets to extract and segment the original target image object more accurately, clearly and intuitively in the evolution process. The experimental simulation results show that, compared with the traditional non-reinitialized level set model segmentation method, the improved method can more accurately extract the edge contours of the target image object, and has better edge contour extraction effect, and the original target noise reduction effect of the improved model is better than that of the model before the improvement. The original target image object edge contour takes less time to extract than the conventional non-reinitialized level set model before the improvement. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0282909 |